Aspects of noncommutativity in field

theory, strings and membranes

Thesis submitted for the degree of

Doctor of Philosophy (Science)
of
Jadavpur University, Kolkata

June 2007

Kuldeep Kumar

Satyendra Nath Bose National Centre for Basic Sciences
JD Block, Sector 3, Salt Lake, Kolkata 700098, India






Certificate from the supervisor

This is to certify that the thesis entitled ‘Aspects of noncommutativity in field theory, strings
and membranes’ submitted by Kuldeep Kumar, who got his name registered on June 29,
2004 for the award of Ph.D. (Science) degree of Jadavpur University, is absolutely based
upon his own work under the supervision of Professor Rabin Banerjee at S.N. Bose National
Centre for Basic Sciences, Kolkata, India, and that neither this thesis nor any part of it has

been submitted for any degree/diploma or any other academic award anywhere before.

Rabin Banerjee

Professor

S.N. Bose National Centre for Basic Sciences
JD Block, Sector 3, Salt Lake

Kolkata 700098, India






To my beloved parents

qTaT &+ e ST

s A= sy fase o







Acknowledgements

As a sense of fulfilment at the completion of this phase of academic endeavour, I wish to

express my gratitude to all those who made this thesis possible.

It has been my privilege to work under the able guidance of my revered thesis advisor,
Prof. Rabin Banerjee. His insights into various problems and insistence on clarity have
been most useful and inspiring. I express my deep sense of gratitude to him for his

patience, persistence and his prompt and sincere help whenever I needed it most.

I extend my sincere thanks to Dr. Biswajit Chakraborty for many fruitful, enthusiastic
and illuminating discussions, academic or otherwise. He has always motivated me to do
my best. I am grateful to him for always being there to help me in all matters. Thanks
are also due to Prof. Abhijit Mookerjee for his help and care on many occasions during

my stay here.

It is my pleasure to thank many friends of the Centre for their cooperation and help.
I have had a very nice time with Tomy, Aftab, Ankush, Prasad, Soumen, Sunandan,
Anirban, Arindam and Saurav over all these years. They made my stay here an experience

I cherish much.

I gratefully acknowledge financial support from the Council of Scientific and Industrial

Research, Government of India, during the period of this work.

I owe thanks to my many teachers. Shri Prem Das, Shri Bali Ram, Shri Kartar
Chand, Shri Ratan Lal, Shri Somraj Shastri, Smt. Lalita, Shri R.K. Chopra, Smt. Krishna
Kanwar, Shri Ram S. Anand, Shri Harnam S. Choudhary, Shri K.S. Pathania, Shri
S.C. Dutta, Shri L.R. Sharma, Shri K.L.. Verma and Dr. [.S. Minhas are still fresh in my

memory.



I am fortunte to have many friends and well-wishers. Rajinder, Anoop, Som Dutt,
Pradeep and Anup deserve special mention for their helpful attitude and emotional sup-

port. I cannot forget Jeewan for his time-to-time help in every way.

My sincerest thanks go to my parents. Although my father himself is no more educated
than high school and my mother is an illiterate, they motivated me to pursue higher
studies, in spite of many unfavourable circumstances. They have been unshakeable pillars
of support, helping me fight and win every battle. Their faith in my abilities has been my
strength—my real emotions are much beyond the pages of this thesis. I am also indebted
to my sisters and brothers-in-law, Trishla—Purshotam, Kanta—Baldev, Shobha—Sharwan,
Sushma-Parshottam and Sunita-Ram Singh, for their unflinching support. I send my
love and gratitude to my nephews and nieces, Ravinder, Arnu, Monu, Ruma, Neenu,
Varinder, Reenu, Pammu, Sannu, Raju, Mittu, Nishu and Sannu. I record my gratitude

to my wife, Rachna, for her love and cooperation.

Finally, and most importantly, I thank Him for all His blessings and kindness.



List of publications

1. Membrane and noncommutativity
Rabin Banerjee, Biswajit Chakraborty and Kuldeep Kumar
Nucl. Phys. B 668 (2003) 179

2. Noncommutative gauge theories and Lorentz symmetry
Rabin Banerjee, Biswajit Chakraborty and Kuldeep Kumar
Phys. Rev. D 70 (2004) 125004

3. Maps for currents and anomalies in noncommutative
gauge theories
Rabin Banerjee and Kuldeep Kumar

Phys. Rev. D 71 (2005) 045013

4. Seiberg—Witten maps and commutator anomalies in
noncommutative electrodynamics
Rabin Banerjee and Kuldeep Kumar

Phys. Rev. D 72 (2005) 085012

5. Deformed relativistic and nonrelativistic symmetries on
canonical noncommutative spaces

Rabin Banerjee and Kuldeep Kumar

Phys. Rev. D 75 (2007) 045008






ASPECTS OF NONCOMMUTATIVITY IN
FIELD THEORY, STRINGS AND MEMBRANES






Contents

1 Introduction 1
1.1 Noncommutative spaces . . . . . . . . . . . .. .. 1
1.2 Emergence of noncommutativity . . . . . . .. ..o 4
1.3 Structure of the thesis . . . . . . . . .. .. oL 7

2 Strings, membranes and noncommutativity 11
2.1 Noncommutativity in open string . . . . . . . . .. ... ... .. .... 15

2.1.1  Free Polyakov string . . . ... .. ... ... L. 15
2.1.2 Interacting Polyakov string . . . . . . . ... .. ... ... .... 19
2.2 Free Nambu-Goto membrane . . . . . . . ... ... ... .. ... ... 20
2.3 Free Polyakov membrane . . . . . . .. ... oo 28
2.4 Interacting Polyakov membrane . . . . . . . . ... ..o 39

3 Maps for currents and anomalies in noncommutative gauge theories 43

3.1 The Seiberg-Wittenmap . . . . . . . . . ... ... 45
3.2 Map for nonabelian currents: classical aspects . . . . . . . ... ... .. 47
3.3 Map for abelian currents: classical and quantum aspects . . . . . .. .. 52

3.4 DISCuSSIOn . . . . . .. 64

il



v

Contents

4 Commutator anomalies in noncommutative electrodynamics
4.1 Anomalous commutators . . . . . . ... ... ... ... ...
4.1.1 Anomalous commutators in the ordinary theory . . . .

4.1.2 Anomalous commutators in the noncommutative theory

4.2 Consistency conditions and the anomalous commutators . . .

4.3 DiIScuSsion . . . . . ...

5 Noncommutative gauge theories and Lorentz symmetry
5.1 A brief review of noncommutative algebra . . . . . .. .. ..
52 Atoymodel . . . ...
5.3 Noncommutative electrodynamics . . . . . . . . .. .. .. ..
5.3.1 Commutative-variable approach . . . . . . .. ... ..
5.3.2  Noncommutative-variable approach . . . . . . . .. ..

5.4 DIScussion . . . . ...

6 Deformed symmetries on noncommutative spaces
6.1 Deformed conformal-Poincaré algebra . . . . . . .. ... ...
6.1.1 Coordinate transformations and generators . . . . . . .
6.1.2 Representations . . . . . . . ... ...
6.1.3 Coproducts and Hopf algebra . . . . . ... ... ...
6.2 Deformed Schrodinger and conformal-Galilean algebras . . . .
6.2.1 Deformed Galilean symmetry . . . . .. .. ... ...
6.2.2 Deformed Schrodinger algebra . . . . . ... ... ...
6.2.3 Coproducts and Hopf algebra . . . . . ... ... ...
6.2.4 Deformed conformal algebra through contraction . . .

6.3 Discussion . . . . . . .o

7 Concluding remarks

Bibliography

137



Chapter 1

Introduction

1.1 Noncommutative spaces

It was noticed a long time ago that various properties of sets of points can be restated
in terms of properties of certain commutative rings of functions over those sets. In
particular, this observation proved to be extremely fruitful in algebraic geometry and
has led to tremendous progress in this subject over the past few decades. In these
developments the concept of a point in a space is secondary and overshadowed by the
algebraic properties of the (sheaves of) rings of functions on those spaces. This idea also
underlies noncommutative geometry, a new direction in mathematics initiated by the
French mathematician Alain Connes [1]. The central thesis is that the usual notion of
a ‘space’—a set with some extra structure—is inadequate in many interesting cases and

that coordinates may profitably be replaced by a noncommutative algebra.

One important source of inspiration for noncommutative geometry is quantum physics.
It has been known since the heroic days of quantum mechanics that ordinary concepts
of classical mechanics and symplectic geometry do not apply to the subatomic world.
In order to understand the physical phenomena taking place at the atomic scale, one
needs to replace the concepts of classical geometry by other, noncommutative structures.
The classical observables—continuous functions on phase space—are replaced by algebras
of operators, in general unbounded, on the Hilbert space of states or quantum observ-
ables. In Dirac’s parlance, c-numbers get replaced by g-numbers. This procedure is called

quantisation.
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The simplest example is that of a flat space R? which is the phase space of a particle
moving in one dimension. After quantisation, the coordinates ¢ and p of a point in R?
are replaced by operators ¢ and p which obey the Heisenberg-Born—Jordan commutation

relation

[q,p] = ih (1.1)

where h is a fundamental constant of nature, Planck’s constant. Explicitly, one takes
qp(z) = z(x), pY(zr) = —i h(d/dx)(z). This quantisation procedure results in a
structure which can be thought of as a noncommutative deformation of a classical phase
space. Heisenberg’s uncertainty principle implies that there is no natural concept of a
point on this quantum deformed phase space: all we have is a nonabelian algebra of
‘functions on the noncommutative plane’. One can also quantise classical phase spaces

with more complicated geometry.

The idea of extension of noncommutativity to the coordinates was first suggested
by Heisenberg as a possible solution for removing the infinite quantities of field theories
before the renormalisation procedure was developed and had gained acceptance. The
first paper on the subject was published in 1947 by Hartland Snyder [2]. The success of
renormalisation theory however drained interest from the subject for some time. In 1980s
noncommutative geometry was studied and developed by mathematicians, most notably
Alain Connes [1]. The notion of differential structure was generalised to a noncommuta-
tive setting. This led to an operator-algebraic description of noncommutative spacetimes

and a Yang—Mills theory on a noncommutative torus was developed.

The recent interest by the particle physics community was driven by a paper by
Nathan Seiberg and Edward Witten [3]. They argued in the context of string theory
that the coordinate functions of the endpoints of open strings constrained to a D-brane
in the presence of a constant Neveu—-Schwartz B-field—equivalent to a constant magnetic
field on the brane—would satisfy the noncommutative algebra. The implication is that a
quantum field theory on noncommutative spacetime can be interpreted as a low-energy

limit of the theory of open strings.

Another possible motivation for the noncommutativity of spacetime was presented
by Sergio Doplicher, Klaus Fredenhagen and John Roberts [4]. According to general

relativity, when the energy density grows sufficiently large, a black hole is formed. On
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the other hand according to the Heisenberg’s uncertainty principle, a measurement of
a spacetime separation causes an uncertainty in momentum inversely proportional to
the separation. Thus energy of scale corresponding to the uncertainty in momentum
is localised in the system within a region corresponding to the uncertainty in position.
When the separation is small enough, the Schwarzschild radius of the system is reached
and a black hole is formed, preventing any information to escape the region. Thus a lower
limit is introduced for the measurement of length. A sufficient condition for preventing
the gravitational collapse can be expressed as a form of uncertainty relation for the
coordinates. This relation in turn can be derived from a nontrivial commutation relation

for the coordinates.

Voiculescu’s free probability theory [5] is another example of a noncommutative struc-
ture motivated by physics applications. Here the concept of probability space is replaced
by a noncommutative structure leading to noncommuting random variables. One of the
main results of this theory, Voiculescu’s central limit theorem, yields the Wigner semicir-
cle law, which arises in the theory of random matrices. Related fields of quantum ergodic
theory and quantum information theory have recently been the focus of a great deal of

attention. They play a pivotal role in the emerging field of quantum computation.

Just as in the quantisation of a classical phase space, a noncommutative space is
defined by replacing the local coordinates z° of R” by Hermitian operators ' obeying

the commutation relations
(2, 77] = 16", (1.2)

The 7' then generate a noncommutative algebra of operators. Within the framework of
canonical quantisation, Weyl introduced an elegant prescription for associating a quantum
operator to a classical function of the phase-space variables [6]. This technique provides a
systematic way to describe noncommutative spaces in general and to study field theories
defined thereon. Weyl quantisation provides a one-to-one correspondence between the
algebra of fields on R” and this ring of operators, and it may be thought of as an analogue
of the operator-state correspondence of local quantum field theory. Although we shall

deal with the commutators (1.2) with constant 6%, Weyl quantisation also works for
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more general commutation relations.! Given a function f(x), we may interpret it as the
coordinate-space representation of the Weyl operator )7\/\[ f]- The Weyl operator )7\/\[ f] is
Hermitian if f(z) is real-valued. If we now consider the product of two Weyl operators
WIf] and W[g] corresponding to functions f(z) and g(z) then W[f]W]g] = WIS * g]
with the star product defined as?

) (1.3)

r’'=x

(@) = oxp (580,05 ) fla)o(e)

where 0 = 0/ Oz'%. This star-product is associative but noncommutative, and is defined
for constant 6. For § = 0 it reduces to the ordinary product of functions. It is a particular

example of a star product which is normally defined in deformation quantisation [12].

Therefore, the spacetime noncommutativity may be encoded through ordinary prod-
ucts in the noncommutative C*-algebra of Weyl operators, or equivalently through the
deformation of the product of the commutative C*-algebra of functions on spacetime to

the noncommutative star product.

1.2 Emergence of noncommutativity

Although it seems that noncommutative geometry is quite a pure mathematical subject,
noncommutativity does emerge in some definite limits of string theory. The string-theory

origin of noncommutativity is very similar to the coordinate noncommutativity in the

'The most common explicit realisations of the noncommutative nature of spacetime coordinates are:

a canonical structure
[2',27] = 16", 0" € C,
a Lie-algebra structure
21,27 = iCc¥, 2%, C¥, eC,
and a quantum-space structure [7—10]
'3 = ¢ 'RY,2%2', RV, ecC.
We shall restrict to the (commonly studied) canonical structure in this thesis.

2A somewhat detailed discussion about star product and Weyl operator can be found in [11].
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lowest Landau level—both rely on the presence of a strong background field. Let us
first describe the Landau problem [13] briefly?, as it is an important physically realised
example of noncommuting coordinates. Consider a charged particle of mass m moving
in the plane x = (2!, 2?) and in the presence of a constant, perpendicular magnetic field
of magnitude B. The classical Lagrangian of the system is

L="%"ex- A (1.4)
2

where e is the particle charge and A is the corresponding vector potential.

The quantum Hamiltonian is
H=_—77, (1.5)

where 7 = mZ = p' — eA’ are the physical momenta and 7 are the canonical momenta.
We notice that the canonical momenta commute, while the physical momenta satisfy the

commutation relation
[7',77] = iheBe". (1.6)

It is useful to define, in analogy with the classical case, the center-of-orbit operator, whose

components are given by

~. . 1
X' =7 -—=7" 1.7
- T (1.7)

These components can be shown to satisfy the commutation relation

he®

= i6Y, (1.8)

[)?)?ﬂ} = _j

e

where 0% = (—h/eB) . While [#,77] = 0, the X’ are not allowed to commute due to

the presence of the term containing the magnetic field.

Now we consider the strong-magnetic-field limit. In this case, the system is projected
onto the lowest Landau level. A rigorous prescription of how to work in this limit, which
is achieved by solving the constraint 7 ~ 0 (using a projection technique), may be found

in [14]. On heuristic grounds, one can understand the projection onto the lowest Landau

3See [14,15] for a modern account.
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level as a process where the particles have their kinetic degrees of freedom frozen and are
confined into their respective orbit centers [16]. The particle-coordinate observables in

this limit clearly satisfy (1.8) as a consequence of the coincidence between X' and 7.

Usually the relation (1.8) is achieved in the literature by dropping the kinetic term
directly from the Lagrangian (1.4). If we write the vector potential as A = (0, Bz, 0),
and consider the B — oo or m — 0 limits, we can discard the kinetic term and write the

Lagrangian as
L = eBz'i”. (1.9)

In this Lagrangian, the 2! and 2 variables are canonically conjugate, and their respective

quantum operators satisfy a commutation relation identical to (1.8):

.y 1
[z, 77] = —;—ng. (1.10)

The limit m — 0 with fixed B is actually the projection of the quantum-mechanical
spectrum of this system onto the lowest Landau level. (The mass gap between Landau
levels is B/m.) The same projection can be done in the limit B — oo of strong magnetic

field with fixed mass m.

The canonical noncommutativity originating from string theory in [3] is based on
an approximation which is similar to the one of the lowest Landau level just described.
Consider open bosonic strings moving in a flat Euclidean space with metric G, in the
presence of a constant Neveu-Schwarz B-field and with Dp-branes. The B-field probed
by the open strings is equivalent to a constant magnetic field on the branes, and it can be

gauged away in the directions transverse to the Dp-brane world-volume. The world-sheet

action is
T v 1 A v
S =— G0, X"0" X" — =B,,e"0,X"0\X
2 Js T
T )
== / G0y X1ONXY — = / B, X"0,X", (1.11)
2 Jx 2 Jos

where T' is the string tension, ¥ is the string world-sheet, 0, is a tangential derivative
along the world-sheet boundary 0% and the X* is the embedding function of the strings
into flat spacetime. If we consider the limit G, ~ (1/47°T?) — 0, keeping B, fixed [3],
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the bulk kinetic terms of (1.11) vanish. The world-sheet theory in this limit is topological.

All that remains are the boundary degrees of freedom, which are governed by the action

S = ——/ B, X"0,X". (1.12)
2 Jox

If one regards (1.12) as a one-dimensional action, and ignores the fact that the X* (%)
are the endpoints of a string, then it can be considered as analogous to the action corre-
sponding to the Lagrangian of the Landau problem (1.9). Under the approximation being
considered, the X* (t) may be regarded as operators satisfying the canonical commutation

relation

[)?u,)?u] _ (é)uy, (1.13)

The emergence of noncommutativity in the context of string theory will be further illus-

trated in Chapter 2.

1.3 Structure of the thesis

This thesis, based on the work reported in [17-21], is devoted to the study of certain

aspects of noncommutativity in field theory, strings and membranes.

We start with a review, based on [22], of occurrence of noncommutativity in the con-
text of an open string. Then we analyse the dynamics of an open membrane, both for the
free case and when it is coupled to a background three-form, whose boundary is attached
to p-branes. The role of boundary conditions and constraints in the Nambu-Goto and
Polyakov formulations is studied. The low-energy approximation that effectively reduces
the membrane to an open string is examined. Noncommutative features of the boundary
string coordinates, where the cylindrical membrane is attached to the Dp-branes, are
revealed by algebraic consistency arguments and not by treating boundary conditions as
primary constraints, as is usually done. The exact form of the noncommutative algebra

is obtained in the low-energy limit. This is the subject matter of Chapter 2.

In Chapter 3 we already take a noncommutative spacetime and proceed to see its
implications. The Seiberg—Witten map, which provides an alternative method of study-

ing noncommutative gauge theories by recasting these in terms of their commutative
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equivalents, is discussed. Here we derive maps relating currents and their divergences in
nonabelian U(/V) noncommutative gauge theory with the corresponding expressions in
the ordinary (commutative) description. For the U(1) theory in the slowly-varying-field
approximation, these maps are also seen to connect the star-gauge-covariant anomaly in
the noncommutative theory with the standard Adler—Bell-Jackiw anomaly in the com-
mutative version. For arbitrary fields, derivative corrections to the maps are explicitly

computed up to O(6?).

The aim of Chapter 4 is to exploit the Seiberg—Witten maps for fields and currents in
a U(1) gauge theory relating the noncommutative and commutative (usual) descriptions
to obtain the O(f) structure of the commutator anomalies in noncommutative electro-
dynamics. These commutators involve the (covariant) current—current algebra and the
(covariant) current—field algebra. We also establish the compatibility of the anomalous
commutators with the noncommutative covariant anomaly through the use of certain

consistency conditions derived here.

One feature of noncommutative field theories is the violation of Lorentz invariance.
This issue is discussed in Chapter 5. Here we explicitly derive, following a Noether-
like approach, the criteria for preserving Poincaré invariance in noncommutative gauge
theories. Using these criteria we discuss the various spacetime symmetries in such the-
ories. The analysis is performed in both the commutative as well as noncommutative

descriptions and a compatibility between the two is also established.

Although the noncommutativity of spacetime coordinates is taken as the signature
for violation of Lorentz invariance, it has been shown that the relativistic invariance can
be retained in the sense of twisted Poincaré invariance of the theory [23-25]. Chapter
6 is devoted to the study of general deformed conformal-Poincaré (Galilean) symmetries
consistent with relativistic (nonrelativistic) canonical noncommutative spaces. In either
case we obtain deformed generators containing arbitrary free parameters, which close to
yield new algebraic structures. A particular choice of these parameters reproduces the
undeformed algebra. The structures of the deformed generators in both the coordinate
and momentum representations are derived. Notably, the deformations in the momentum
representation drop out for the specific choice of parameters leading to the undeformed

algebra. The modified coproduct rules and the associated Hopf algebra are also obtained.
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We also show that for the choice of parameters leading to the undeformed algebra, the

deformations are represented by twist functions.

Finally, in Chapter 7 we summarise the important results.






Chapter 2

Strings, membranes and

noncommutativity

An intriguing connection between string theory, noncommutative geometry and noncom-
mutative (as well as ordinary) Yang—Mills theory was revealed in [3]. The study of open

string, in the presence of a background Neveu-Schwarz two-form field B, , leads to a

iz
noncommutative structure which manifests in the noncommutativity at the endpoints of
the string which are attached to D-branes. Different approaches have been adopted to

obtain this result.

Over the last decade string theory has been gradually replaced by M-theory as the
most natural candidate for a fundamental description of nature. While a complete defi-
nition of M-theory is yet to be given, it is believed that the five perturbatively consistent
string theories are different phases of this theory. With the replacement of string theory
by M-theory, the string itself has lost its position as the main candidate for the funda-
mental degree of freedom. Instead, higher-dimensional extended objects like membranes
are being considered. (For a review of the theory of membranes, see [26,27].) Indeed it is
known that membrane and five-brane occur naturally in eleven-dimensional supergravity,
which is argued to be the low-energy limit of M-theory. Also, string theory is effectively
described by the low-energy dynamics of a system of branes. For instance, the membrane
of M-theory may be ‘wrapped’ around the compact direction of radius R to become the

fundamental string of type-ITA string theory, in the limit of vanishing radius.

With the shift in focus from string theory to M-theory, there has been a flurry of

11
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activity in analysing noncommutativity in membranes, specifically when an open mem-
brane that couples to a three-form, ends on a D-brane [28-33]. In this chapter we further

this investigation, but with a new perspective and methodology, as explained below.

The study of noncommutative properties in membranes is more involved than the
analogous study in the string case since the equations to be solved are nonlinear. Natu-
rally, in contrast to the string situation, the results could be obtained only under some
approximations. It is useful to recapitulate how noncommutativity is derived in either
the string coupled to the two-form or the membrane coupled to the three-form. There are
nontrivial boundary conditions which are incompatible with the basic Poisson brackets
of the theory. These boundary conditions are considered as primary constraints in the
algorithm of Dirac’s constrained Hamiltonian dynamics [31-35]. The primary constraints
lead to secondary constraints. Noncommutativity is manifested through the occurrence
of nontrivial Dirac brackets. The brackets are found to be gauge dependent, but there is

no gauge where it can be made to vanish.

An alternative approach to deal with noncommutativity in strings was advocated
in [22] where, contrary to other approaches, the boundary conditions are not interpreted
as primary constraints. The noncommutative algebra emerges from a set of consistency
requirements. It is rather similar in spirit to the original analysis of [36] where a modified
algebra, involving the periodic delta function instead of the usual one, was found for the

coordinates and their conjugate momenta, in the example of the free Nambu—-Goto string.

In this chapter we adopt the same strategy to the membrane model. We discuss
both the Nambu-Goto and Polyakov forms of action, although noncommutativity is
explicitly considered only in the latter formulation. The similarities or otherwise in
the analysis of the two actions are illuminated. Analogous to the set of orthonormal
gauge-fixing conditions given for the free Nambu—Goto string [22, 36], we derive a set
of quasi-orthonormal gauge conditions for the free Nambu-Goto membrane. Just as the
orthonormal gauge in the Nambu—Goto string corresponds to the conformal gauge in
the Polyakov string, we find out the analogue of the quasi-orthonormal gauge in the
Polyakov membrane. It corresponds to a choice of the metric that leads to equations of
motion that can be explicitly solved in the light-front coordinates [27]. The structure and

implications of the boundary conditions in the two formulations have been elaborated.
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In the Nambu—Goto case, the conditions involve the velocities that cannot be inverted
so that a phase-space formulation is problematic. Only by fixing a gauge is it possible
to get hold of a phase-space description. In the Polyakov type, on the other hand,
the boundary condition is expressible in phase-space variables without the need of any
gauge choice. This is because the metric itself is regarded as an independent field. In this
sense, therefore, there is no qualitative difference between string and membrane boundary
conditions, since even in the Nambu-Goto string, a gauge fixing is required for writing
the boundary conditions in terms of phase-space variables. We thus differ from [32] where
it is claimed that it is imperative in the membrane case, as opposed to the string case,
to gauge-fix, in order to express the boundary conditions in phase-space coordinates, as

a first step in the Hamiltonian formalism.

The mandatory gauge fixing in the Nambu—-Goto membrane, as we shall show, converts
the reparametrisation-invariant (first-class) system into a second-class one, necessitating
the use of Dirac brackets. This involves the inversion of highly nonlinear expressions,
so that approximations become essential to make any progress. Hence we avoid this

formulation in favour of the Polyakov version, where gauge fixing is not mandatory.

A detailed constrained Hamiltonian analysis of the free bosonic Polyakov membrane
naturally leads to three restrictions on the world-volume metric. These are found to be
identical to those obtained by counting the independent degrees of freedom. Unlike the
case of the classical string where there are three components of the metric and three con-
tinuous symmetries (two diffeomorphism symmetries and one scale symmetry), leading
to a complete specification of the metric by gauge fixing, for the membrane there are six
independent metric components and only three diffeomorphism symmetries. Thus only
three restrictions on the metric can be imposed. Interestingly, the restrictions usually put
in by hand [27] to perform calculations in the light-front coordinates are obtained directly
in our Hamiltonian formalism. This gauge fixing is only partial in the sense that the non-
trivial gauge generating first-class constraints remain unaffected. Effectively, therefore,
it is a gauge-independent Hamiltonian formalism. We show that the boundary string
coordinates corresponding to the membrane-Dp-brane system (i.e., when the boundary
of the open membrane is attached to p-branes) satisfy the usual Poisson algebra without
any noncommutativity. By imposing further gauge conditions, it is possible to simulate a

situation where the cylindrical membrane is wrapped around a circle of vanishing radius
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so that the open membrane passes over to an open string. The boundary conditions of
the membrane reduce to the well-known Neumann boundary conditions of the string in
the conformal gauge, just as the membrane metric reduces to the conformal metric of the

Polyakov string.

Next, the interacting membrane in the presence of a constant three-form tensor poten-
tial is discussed. Proceeding in a gauge-independent manner, it is shown that, contrary
to the free theory, the boundary string coordinates must be noncommutative. This is
shown from certain algebraic conditions. However, in contrast to the string case where it
was possible to solve these equations [22], here an explicit solution is prevented from the
nonlinear structure. Nevertheless, by passing to the low-energy limit (wrapping the mem-
brane on a circle of vanishingly small radius), the explicit form of the noncommutativity

in an open string, whose endpoints are attached to a D-brane, are reproduced.

Section 2.1, which deals with a brief discussion of noncommutativity in an open string,
is a summary of the essential results of [22]. In section 2.2 the free Nambu-Goto mem-
brane is discussed and the form of the quasi-orthonormal gauge conditions, which act
as the analogue of the orthonormal gauge conditions in the Nambu-Goto string [36], is
derived. The role of the boundary conditions in maintaining stability of the membrane
is discussed. The free Polyakov membrane is considered in section 2.3, where its detailed
constrained Hamiltonian account is given. The complete form of the energy-momentum
tensor is derived. All components of this tensor are written as a linear combination of
the constraints. This is a generalisation of the string case since even though Weyl sym-
metry is absent in the membrane, the energy-momentum tensor has a (weakly) vanishing
trace; namely, it vanishes only on the constraint shell. The brackets for the free theory
with a cylindrical topology for the membrane yield the expected Poisson algebra without
any noncommutativity. The low-energy limit where the membrane is approximated by
the string, is discussed in in the last part of this section. Section 2.4 gives an analysis
of the interacting theory. General algebraic requirements enforce a noncommutativity
of the boundary coordinates of the membrane, which are attached to the p-branes. No
gauge fixing or approximation is needed to reveal this noncommutativity. The explicit
structure of the algebra is once again computed in the low-energy approximation, when
the result agrees with the conformal-gauge expression for the noncommutativity among

the coordinates of the endpoints of the string attached to D-branes.
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2.1 Noncommutativity in open string

We begin by summarising the essential results of [22] that will be used for an easy

comparison of our results of open membrane with those of open string.

2.1.1 Free Polyakov string

The free Polyakov string action is
T y .
Sp = -5 /dem/—gg”aiX“ﬁqu = /Ed3a,§f, 1,7 =0,1, (2.1)

where T stands for string tension, 7 and ¢ are the usual world-sheet parameters and
gij, up to a Weyl factor, is the induced metric h;; = 0;X#0;X,, on the world-sheet. X*
are the string coordinates in the D-dimensional Minkowskian target space with metric
diag(—1,1,1,--- ,1). This action has the usual Poincaré, Weyl and diffeomorphism in-
variances. Both X* and g;; are regarded as independent dynamical variables [37]. The

canonical momenta are

0.9 0 0%
= ggxny — VI N = g =0 .

It is clear that while II, are genuine momenta, m;; ~ 0 are the primary constraints of
the theory. To determine the secondary constraints one can either follow the traditional
Dirac’s Hamiltonian approach or just read them off from the equation obtained by varying
gij, since this is basically a Lagrange multiplier. This imposes the vanishing of the
symmetric energy—momentum tensor:

\/i__g?; 1; = —T,0,X"8; X, + %

Because of the Weyl invariance, the energy-momentum tensor is traceless:

T, =

959" 0 X 0,X,, ~ 0. (2.3)

T = ¢"T; =0 (2.4)

so that only two components of T;; are independent. These components, which are the

constraints of the theory, are given by

x1 = 2T,gT" = —2T, Ty, = 11> + Thyy = 0, (2.5)
X2 = V—gT} = 11,0, X" = 0. (2.6)
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The canonical Hamiltonian density obtained from Eq. (2.1) by a Legendre transformation

is given by

S = J—gT% = YLy 4 220y, (2.7)
275911 g1

which, as expected, turns out to be a linear combination of the constraints. The boundary

condition written in terms of phase-space variables is given by

[T0X" + /=gg"'TI"] =0, (2.8)

o=0,7

where the string parameters are in the region —oo < 7 < +00, 0 < ¢ < 7. This boundary

condition is incompatible with the first of the basic Poisson brackets:

{XH(1,0),11,(7,0")} = 846(0 — o), (2.9)
{gij(T, o), 7 (T, 0')} = %(555; + 555;-“)5(0 —a'). (2.10)

From the basic Poisson brackets it is easy to generate a first-class (involutive) algebra:
AT? [xa(0) + x2(0")] 816(0 — o),
[x1(0) + x1(0")] B1d (0 — o), (2.11)

X
[X2(0) + x2(0")] 16(0 — o*).

{Xl(a)aXl(U/)}
{x2(o), x1(a")}
{x2(0), x2(0")}

The constraints y; and ys generate the diffeomorphism transformations.

The boundary condition (2.8) is not a constraint in the Dirac sense, since it is ap-
plicable only at the boundary. Thus, there has to be an appropriate modification in the
Poisson brackets to incorporate this condition. This is not unexpected and occurs, for
instance, in the example of a free scalar field ¢(z) in 1 + 1 dimensions, subjected to
periodic boundary condition of period, say, 2. There the Poisson bracket between the

field ¢(t,x) and its conjugate momentum (¢, ) is given by

{¢(t7 :L’), ﬂ-(tv y>} = 5p(x - y>’ (2'12)

which is obtained automatically if one starts with the canonical harmonic-oscillator al-
gebra for each mode in the Fourier space. Here
/ 1 in(z—a’)
dp(x — ') Ze (2.13)

2T
neZ
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is the periodic delta function of period 27

Before discussing the mixed condition (2.8), let us consider the simpler Neumann-type
condition. Since the string coordinates X*(7, o) transform as a world-sheet scalar under
its reparametrisation, it is more convenient to get back to scalar field ¢(t,z) defined on
(1 4+ 1)-dimensional spacetime, but with the periodic boundary condition replaced by

Neumann boundary condition,
029l y—or =0, (2.14)

at the endpoints of a 1-dimensional box of compact size, i.e., of length 7. Correspondingly,
the 0, appearing there in the Poisson bracket (2.12)—consistent with periodic boundary
condition—has to be replaced now with a suitable ‘delta function’ incorporating Neumann

boundary condition, rather than periodic boundary condition.

The following usual property of delta function is also satisfied by do,(z — 2'):

+m
|- @) = fa) (2.15)

™

for any periodic function f(z) = f(x + 27) defined in the interval [—m, +7]. Restricting
to the case of even and odd functions, fi(—z) = £fi(z), the above integral reduces to
| asite o) = feo) (2.16)
0

where
Ay(a' x) = 0p(2" — x) £ 0p(2" + )

Since any function ¢(z) defined in the interval [0, 7] can be regarded as a part of an
even or odd function fi(z) defined in the interval [—m, 7], both AL(z,2’) act as delta
functions defined in half of the interval at the right, i.e., [0, 7] as follows from Eq. (2.16).
It is still not clear which of these Ay (x,z’) functions should replace d,(z — 2’) in the
Poisson-bracket relation. We now consider the Fourier decomposition of an arbitrary

function f(z) satisfying periodic boundary condition f(z) = f(z + 2):

F@) =" fae'™. (2.17)

neL
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Clearly,

fl(o) = iZn(fn—f,n), f/<7T> = iZ(_l)nn(fn_ffn)-

n>0 n>0
Now for even and odd functions, the Fourier coefficients are related as f_, = +f, so

that Neumann boundary condition f'(0) = f/(7) = 0 is satisfied if and only if f(z) is
even. Therefore, one has to regard the scalar field ¢(x) defined in the interval [0, 7] and
subjected to Neumann boundary condition (2.14) as a part of an even periodic function
fi(z) defined in the extended interval [—m,+x|. It thus follows that the appropriate
Poisson bracket for the scalar theory is given by {¢(t,z),n(t,2")} = A (x,2’). It is
straightforward to generalise it to the string case as

{X"(7,0),11,(7,0")} = * A, (0,0"), (2.18)
the Lorentz indices playing the role of ‘isospin’ indices, as viewed from the world-sheet.
We observe also that the other brackets

{XH*(r,0),X"(1,0")} =0, (2.19)

{1*(r,0),11"(7,0")} = 0 (2.20)
are consistent with the boundary conditions and hence remain unchanged.

The mixed condition (2.8) is compatible with the modified brackets (2.18) and (2.20),

but not with (2.19). Therefore, let us make an ansatz,

{XH*(1,0), X" (1,0")} = C"(0,0"), (2.21)
where

C*(o,0") = —C"(d',0). (2.22)

Imposing the boundary condition (2.8) on this algebra, one gets

01C"(0,0)| yrgr = 1C"(0,0)]yegr = V—99"' " Ay (0, 0"). (2.23)
For a restricted class of metrics that satisfy 01¢,; = 0 it is possible to give a quick solution

of this equation as

C*(a,0") = V=g99"n" [©(0,0") — ©(0’, 0)]. (2.24)
This noncommutativity can be made to vanish in gauges like conformal gauge, where

"' = 0, thereby restoring the usual commutative structure. The essential structure of

the involutive algebra (2.11) is still preserved, but with (o — ¢’) replaced by A, (o, 0”).
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2.1.2 Interacting Polyakov string

The Polyakov action for a bosonic string moving in the presence of a constant background

Neveu-Schwarz two-form field B, is given by
T, ) 3
SP = —E /deU (\/ —gg”&-X“@jXﬂ + ee”BW&-X“@-X”) s (225)

where a ‘coupling constant’ e has been introduced. A usual canonical analysis leads to

the following set of primary first-class constraints:

9T = L [(1, + eB,, 0: X")(II* + eB" 8, X,) + T h11] =~ 0, (2.26)

V=gT° =11,0, X" =~ 0, (2.27)
where

I, = T3 [/—90"X,, + €B,,0: X" (2.28)

is the momentum conjugate to X*. The boundary condition written in terms of phase-

space variables is

(01X, +TIP(NM ) ] =0, (2.29)

o=0,7
where

M, =T,[6°, — €B”B,,], Ny =-2p,,+eB,. (2.30)

V=9
The {X*,1I1,} Poissson bracket is the same as that of the free string whereas considering

the general structure (2.21) and exploiting the above boundary condition, one obtains

01 Cu(0,0”) = (NM™),,A(0,0")], (2.31)

|U:0,7r

=0,7

As in the free case, restricting to the class of metrics satisfying 01g;; = 0, the above

equation has a solution

Cuw(o,0') = %(NM_l)(,,H) ©(c,0") — O(d',0)]

+3(NM )y [B(0,0') +O(c",0) - 1], (2.32)

where (NM 1), the symmetric and (NM 1)}, the antisymmetric part of (NM 1),

The modified algebra is gauge dependent; it depends on the choice of the metric. However,



20 Chapter 2. Strings, membranes and noncommutativity

there is no choice for which the noncommutativity vanishes. To show this, note that the
origin of the noncommutativity is the presence of non-vanishing N,, in the boundary
condition (2.29). Vanishing N,, would make B, and 7, proportional which obviously
cannot happen, as the former is an antisymmetric and the latter is a symmetric tensor.
Hence, noncommutativity will persist for any choice of world-sheet metric g;;. Specially

interesting are the expressions for noncommutativity at the boundaries:

<NM71>[V#]’

(2.33)
(NM_l)(,/M).

2.2 Free Nambu—Goto membrane

A dynamical membrane moving in D—1 spatial dimensions sweeps out a three-dimensional
world-volume in D-dimensional spacetime. We use a metric with signature (—, +,+, -+ ,+)
in the target space whose indices are pu,v = 0,1,2,..., D — 1. We can locally choose a
set of three coordinates o, i = 0,1, 2, on the world-volume to parameterise it. We shall
sometime use the notation 7 = ¢° and the indices a, b, . . . to describe ‘spatial’ coordinates
c% a = 1,2, on the membrane world-volume. In such a coordinate system, the motion
of the membrane through spacetime is described by a set of D functions X*(¢°, o', %)

which are the membrane coordinates in the target space.

Although we are going to study the noncommutativity through the Polyakov action,
we find it convenient to briefly discuss the Nambu-Goto action also. The Nambu-Goto
analysis will be just an extension of the string case considered in [36]. The Nambu-Goto
action for a membrane moving in flat spacetime is given by the integrated proper volume

swept out by the membrane:

Sne = —T/ d*ov—h = / Ao Lc (XH, 0, XH), (2.34)
5 by
where 7' is a constant which can be interpreted as the membrane tension and h = det h;;
with
hij = 0;.X"0;X,, (2.35)

being the induced metric on (2 + 1)-dimensional world-volume, which is nothing but

the pullback of the flat spacetime metric on this three-dimensional sub-manifold. This
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induced metric, however, does not have the status of an independent field in the world-
volume; it is rather determined through the embedding fields X#. The Lagrangian density
is Zng = =T+ —h. The Euler-Lagrange equation is given by

) (\/—_hhijan”> —0, (2.36)

while the boundary conditions are given by

Pl = —TV—-ho"X, o 0, (2.37)
where
. 0Ae ;
P, = oXH TV—-ho'X, (2.38)

and 0X represents the boundary. The components 732 = II,, are the canonical momenta

conjugate to X*. Using this, the Euler-Lagrange equation (2.36) can be rewritten as
OII* + 0, P =0. (2.39)
It can be seen easily that the theory admits the primary constranits

p=1P+T?h=0, (2.40)
¢o = 11,0, X" = 0, a=1,2, (2.41)

where II? = II*II,, and h = det hg, = hi1hoy — (hi2)?. These constraints are first-class

since the brackets between them vanish weakly:

{¢(1,0),¢(r,0)} = AT? [{hag (1,0) 016 (6—0") — hia (1,0) 06 (6 —0") } @1 (7, 0)
+{h11(1,0) 020 (0—0") — hya (1,0) D16 (6 —0')} ¢o (7, 0)
—{hay (1,0") 016 (0—0") — hya (1,0") 040 (6 —0")} &1 (1, 0)
—Ah11 (1,0") 050 (6—0") — hya (1,0") 010 (0—0")} o (T, 07)]

=~ 0,
{60 (1,0), 60 (1, 0")} = 64, (7,0) 0u8 (6—0") = 64 (7,0") 3 (7 —0") ~ 0,
{6 (1,0) 6 (1,0)} = 20 (7,0) 0,0 (5—0") + 0u) 6 (0 —0") = 0,
(2.42)

where 0!, = 2

= 8U,a .
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The canonical world-volume energy-momentum tensor density' can be obtained through

Noether theorem:

[00] j — a(T;i)anu - 6 jZNG. (243)

In particular, [6c]°, = 0, [0c]°, = ¢ = 0, [0c]*, = 0 and [6c]*, = 0. We notice that
the canonical Hamiltonian density, Hc = [f¢]%,, obtained by Legendre transformation,
vanishes strongly. Since the canonical energy—momentum tensor density is first-class, we
may add to it a linear combination of first-class constraints with tensor-valued coefficients

to write down the total energy—momentum tensor density as

0 =U'jp + V¥, = 0. (2.44)
The generators of 7- and o“translations are

Hp = / d?o6°, H, = / d?c6°,. (2.45)

As one can easily see, there are no secondary constraints. The Hamilton’s equation
XH = {X* Hp} gives 9o X" = 2U%II* + V*9, X*, which reproduces the definition of

momenta [1* for the following choice of U% and V:

v —h hhoe  _
=3 V== = ho, (2.46)

where h® (# h®, which is obtained by chopping off first row and first column from
hi, the inverse of hi;) is the inverse of hy, in the two-dimensional subspace. The
other equation, IT* = {II* Hr}, reproduces the Euler-Lagrange equation (2.36) whereas
O, XH* = {X*, H,} gives 0, X" = 2U°ITI* + V¥ 9, X*, which is satisfied for

U, =0, v, =45, (2.47)

Coming to the conserved Poincaré generators in the target space, the translational

generator is given by

P, = /dQO'H/“

! #nq transforms as a scalar density under diffeomorphism.
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and the angular-momentum generator by
M" = / d%o (XHI1Y — XVTI#).

As can be easily checked, these generators generate appropriate Poincaré transformations.
The above analysis can be generalised in a straightforward manner to an arbitrary p-

brane.

There is an interesting implication of the boundary conditions (2.37). For a cylindrical
membrane with ! € [0,7], 0% € [0,27), 02 representing the compact direction, the

boundary condition is written as

1 S _
PH‘leo,ﬂ =-T ho XN ol=0m = 0.
Squaring the above equation, we get
lﬂbhn‘al:o,fr = [hoohaz — (hoz)Z]c,lza,r =0, (2.48)
which implies
h 2
h00|01:0,7r = ( 02) (249)
h'22 ol=0,1

However, hos is strictly positive and cannot vanish at the boundary in order to prevent it
from collapsing to a point as the length of the boundary is given by fo% Vhaado?. This

indicates that

X2 = h00|01:0,7r >0

ol=0,7
so that the points on the boundary move along either a space-like or light-like trajectory.
If we now demand that the speed of these boundary points should not exceed the speed

of light then we must have hgs|,1-0, = 0 in Eq. (2.49) so that

X2 = h00|01:0,7r =0.

ol=0,7
Therefore the boundary points move with the speed of light which is a direct gener-
alisation of the string case where a similar result holds. For a square membrane with
o', 0% € [0, 7], the boundary conditions (2.37) are written as
Pj\glzw = —-TV-ho'X,

P2 = —TV-hd’X,

02=0,m

=0,

ol=0,7

=0.

2

o°=0,m
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Therefore, in addition to Eq. (2.48), we also have

hh22|02:0,7r = [hOOhll - (hm)ﬂ =0.

02=0,1

Proceeding just as in the case of cylindrical membrane, we find that we must have

h02‘01:07ﬂ' =0 and h01’02:07ﬂ- = 0 so that
X2’0'1:0,7r =0= X2‘0'2:0,7ra

which shows that the boundary points move with the speed of light. Also, since hg, = 0
at the boundary, for both the cylindrical or square topology, it implies that the vector
Jo X" is not only null, but also orthogonal to all directions tangent to the membrane
world-volume. Hence the boundary points move with the speed of light, perpendicularly
to the membrane. This peculiar motion is exactly reminiscent of the string case. The
tension in the free membrane would cause it to collapse. This is prevented by the angular
momentum generated by the boundary motion, just as the collapse of the free string is

thwarted by a similar motion of the string endpoints [38].

Quasi-orthonormal gauge fixing conditions. As we shall see now, the membrane
case, or any p-brane with p > 1 for that matter, involves some subtle issues. The first step
is to provide a set of complete gauge fixing conditions. Taking a cue from the previous
analysis we would like to generalise the condition hg, ~ 0, so that it holds everywhere,
instead of just at the boundary. This is also quite similar in spirit to what is done for
implementing the orthonormal gauge in the string case. Indeed, following the string

analysis of [36], we first impose the following gauge fixing conditions:

PHr

/\“ (X“ (T, 0') — ﬂ) ~ 0, (250)
PH

A (H“ (r,0) — 7) ~ 0, (2.51)

where 0 = (0',0%) and A, is an arbitrary constant vector and A is taken to be the

‘parametric area’ of the membrane. For example, if the membrane is of square topology
with o1, 02 € [0, 7], it will be 72 and for cylindrical topology with o € [0, 7], 02 € [0, 27)
(membrane periodic along o*-direction), it will be 272, Clearly, this ‘parametric area’

is not an invariant quantity under two-dimensional diffeomorphism. One can think of
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the square or cylindrical membrane to be flat at one instant to admit a Cartesian-like
coordinate system on the membrane surface which will provide a coordinate chart for it

during its future time evolution.

Differentiating Eq. (2.50) with respect to 7 and using Eq. (2.51), we get
\-

. AP II
X ——m ~ ——. 2.52

A TA T (2.52)

Differentiating Eq. (2.50) with respect to 0%, and Eq. (2.51) with respect to 7 we get

A 9,X &0, (2.53)
8 (A~ TI) = 0. (2.54)

Using Eq. (2.54), it follows from the form (2.39) of Euler-Lagrange equation that

0o (AP = 0. (2.55)
Upon contraction with A\*, the boundary conditions (2.37) give

AP s =0. (2.56)
Now we impose an additional gauge fixing condition?

£%9, (A - Py) =~ 0. (2.57)

20ne can generalise this gauge fixing condition (2.57) for higher-dimensional hyper-membranes. Any
n-dimensional divergenceless vector field A%, subjected to the boundary condition A%*|sx, = 0 (just like
M- P in (2.55) and (2.56)) can be expressed as A% = g2, B. . . where B, ., , are the
components of an (n —2)-form. Like the Kalb-Ramond gauge fields, these B’s have a hierarchy of ‘gauge
symmetries’ given by B — B’ = B + dB(,_3), Bn-3) — BEn—S) = B(y—3) + dB(;_4),---, 80 on
and so forth, where B, is a p-form. One can therefore easily see that the demand A* = 0 entails (n—1)
additional constraints as there are (n — 1) independent components of B, _5). With two gauge fixing
conditions of type (2.50) and (2.51), this gives rise to (n 4+ 1) number of independent constraints, which
exactly matches with the number of first-class constraints of the type (2.40) and (2.41) of the theory.
For the special case of n = 2, A* = £%9,B, where B is now a pseudo-scalar. Clearly the demand
A = 0 is equivalent to the gauge fixing condition (2.57). For the case n = 3, A% = £%¢9, B, so that
3-vector is expressed as a curl of another 3-vector, in a standard manner, having only two transverse
degrees of freedom; the longitudinal one having been eliminated through the above mentioned gauge

transformation.
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Thus, we have from Egs. (2.55) and (2.57) both the divergence and curl vanishing for
the vector field (A - P%) in the 2-dimensional membrane, which is also subjected to the

boundary conditions (2.56). We thus have
APU=0 Yoo (2.58)
In view of Eq. (2.53), we have \-II ~ —Tv/—hh"(\- 3y X), which, using Eq. (2.52) gives
h/—h ~ —1. (2.59)

Using Egs. (2.52) and (2.53), Eq. (2.58) gives h°® ~ (0 which implies

1
hoa = 0, R ~ —. (2.60)
hoo
From Egs. (2.59) and (2.60) it follows that
hoo + h = 0. (2.61)

The term quasi-orthonormality in this case means that the time-like vector dp is or-
thogonal to the space-like vectors d,, which follows from Eq. (2.60). However, the two
space-like directions d; and 0, need not be orthogonal to each other. Also note that by
replacing 7 — a7, a a constant number, in Eq. (2.50), the normalisation condition (2.61)

will change to hgy + a2h = 0.
Using the quasi-orthonormal conditions (2.60) and (2.61), the Lagrangian density
becomes L ~ —Th =~ Thyy ~ % (hoo — B). The effective action thus becomes

T
Seﬁ = 5 / d30' [hoo — hnhzg + (h12>2} , (262)
b

which gives the equation of motion:

0000, + 01 (h1205X,, — hasd1 X,.) + 0o (h1201 X, — h110xX,,) = 0. (2.63)

Note that the quasi-orthonormal conditions (2.60) and (2.61) do not correspond to
any gauge conditions themselves as they contain time derivatives. Actually they follow
as a consequence of the conditions (2.50), (2.51) and (2.57) which are to be regarded
as gauge fixing conditions. These gauge conditions, when imposed, render the first-class

constraints (2.40) and (2.41) of the theory into second-class as can be seen from their
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non-vanishing Poisson-bracket structure. Therefore, Nambu-Goto formalism requires the
evaluation of Dirac brackets where these constraints are implemented strongly. As we
shall see subsequently, in the Polyakov formulation the constraints (2.40) and (2.41) are

not rendered into second-class and we can avoid the detailed calculation of Dirac brackets.

It is possible to draw a parallel between the quasi-orthonormal gauge discussed here
and the usual orthonormal gauge in Nambu-Goto string, which is the analogue of the
conformal gauge in the Polyakov string. In the latter case the equations of motion linearise
reducing to the D’Alembert equations. This is possible because the gauge choice induces
a net of coordinates that form a locally orthonormal system [39]. For the membrane, the
invariances are insufficient to make such a choice and the best that we could do was to
provide a quasi-orthonormal system. It is however amusing to note that if we forced an
orthonormal choice, so that hg, =~ 0 is supplemented with hio =~ 0 and hy; = hgy =~ 1,
then the equation of motion (2.63) indeed simplifies to the D’Alembert equation. This

provides an alternative way of looking at the quasi-orthonormality.

If we do not impose quasi-orthonormality, it is highly nontrivial, if not totally impos-
sible, to express the boundary conditions (2.37) in terms of phase-space variables because
the canonical momentum II, = 732 (2.38), which can be re-expressed as

I, = % (M — 0u X, W0, X)) Do X"
involves a projection operator given by the expression within the parentheses in the above
equation. The velocity terms appear both in the right of the projection operator and in
v/—h appearing in the denominator. This makes the inversion of the above equation to
write the velocities in terms of momenta highly nontrivial. Nevertheless, all this simplifies

drastically in the quasi-orthonormal gauge to enable us to simplify the above expression

to
HM = T&OXM (2.64)

so that the boundary condition (2.37) is now expressible in terms of phase-space variables

as

(ha201 X, — h1202X,,) 117 = 0.

ol=0,m
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Finally we notice that the parameters U% and V% given by Eq. (2.46) simplify in
this gauge to

Ve, =0 (2.65)

while U%, and V%, given by Eq. (2.47) remain unchanged. Now the generators of 7 and

o® translations (2.45) become

Hyp d*ov), H, = / d*o¢,. (2.66)

T ar
It is straightforward to reproduce the action (2.62) by performing an inverse Legendre
transformation. Computing the Poisson bracket of X, (7,0) with the above Hyp, the
Hamilton’s equation 0yX,, = {X,, Hr} gives Eq. (2.64), the definition of momenta in
this gauge. Then,

Geft :/d?’aHM@OX“—/dTHT
>

just yields (2.62). The other equation, dyllI,, = {Il,, Hr}, reproduces Eq. (2.63), which

is the Euler-Lagrange equation following from the effective action (2.62).

Notice that the values of U% and V%, are gauge dependent. The particular values
given by Eq. (2.65) correspond to our quasi-orthonormal gauge. Had we chosen a different
gauge, we would have obtained different values for these parameters. On the contrary, the
parameters U°, and V%, are gauge independent. This is consistent with the symmetries
of the problem. There are three reparametrisation invariances, so that three parameters
among these U’s and V’s must be gauge dependent, manifesting these symmetries. Since
the reparametrization invariances govern the time evolution of the system, the gauge

dependent parameters are given by U, and V%, while the others are gauge independent.

2.3 Free Polyakov membrane

The Polyakov action for the bosonic membrane is [27]
T .
Sp = —E/Ed‘?a\/—g (970,.X"0;X, — 1), (2.67)

where an auxiliary metric g;; on the membrane world-volume has been introduced and

will be given the status of an independent field variable in the enlarged configuration
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space. The final term (—1) inside the parentheses does not appear in the analogous
string theory action. A consistent set of equations can be obtained only by taking the
‘cosmological’ constant to be —1. Indeed, the equations of motion following from the

action (2.67) but with arbitrary cosmological constant A are

9; (V—99”9;X") =0, (2.68)
1

while the boundary conditions are

0“XH) 55 = 0. (2.70)
Equation (2.69) can now be satisfied if and only if we identify g;; with h;;:

9ij = hij = 0;.X"0; X, (2.71)

for the case A = —1 so that the action (2.67) reduces to the Nambu-Goto action (2.34).

The canonical momenta corresponding to the fields X* and g;; are

0y .
= o= = —TV=g0’X,, (2.72)
0
n = 22— 0. 2.73
90 (2.73)

Clearly, 7 ~ 0 represent primary constraints of the theory. The canonical Hamiltonian

density is

M =TL,0,X" — &

/) — Oa T —
= ZT;HQ . ggg HH(%X“ + 2\/g 9 (922]111 + g11hos — 2912h12 — g) . (274)

Therefore, the total Hamiltonian is written as

HT = /dQO' (% + )\Z’jﬂ'ij) s (275)

where );; are arbitrary Lagrange multipliers. Conserving the constraint 7% ~ 0 with

time, 7% = {7, Hr} ~ 0, we get

Qy = 11° + T2 (gaoha1 + giihas — 2g12his — g) = 0. (2.76)
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Similarly, conserving other primary constraints with time, we get

h

O = A5 (2922 —gg' ) {H2 + T2 (g22hi1 + gr1hos — 2912h12)}
T\/—
— 9922 ooy, 9, X+ — 90211 WO X" = 9 (2hgy — gg™)
g
~ 0, (2.77)
Q3 = 4T_gg (2911 — §922) {H2 + T2 (ga2h11 + gr1hos — 2912h12)}
T —aq
. g?;lgOaHuaaXM 9011—[ 81X“ _ g (2h11 . g922)
g g 4g
~ 0, (2.78)
Qy=-— 2T o2 (2912 + 39 ) {H2 + T (go2h11 + g11has — 2912h12)}
2 T./=
+ 2992 ooy, 0, X+ + 90211 X+ 901H WO X"+ =L 9 (2hay + 59'2)
g g
~ 0,
(2.79)
="
Qs = — g {H2 + T? (ga2h11 + g11hoa — 2g12h12 — _)}
- 922Hu31X + g1211,0, X"
~ 0, (2.80)
—gq%
Q6 = — g {II? + T? (gazh11 + g11haz — 2912012 — §) }
- 911HM32X + g2l 00 X
~ 0. (2.81)

The above constraints appear to have a complicated form. Also, their connection with
the constraints obtained in the Nambu—-Goto formalism, is not particularly transparent.

To bring the constraints into a more tractable form and to illuminate this connection, it
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is desirable to express them by the following combinations:

=y —T°y~0, (2.82)
Q= 9 (2920 — gg") Q) — L2 g0ag, @qﬁ LIV s, (2.83)
g g 29
Q3 = ATa? Y (2911 — g9 ) 0 — 9 9" o — @Cbl + an ~ 0, (2.84)
g g* 29
2 T\/
Qs = X9 (295 + gg'?) Oy + “222 °“¢a+@¢1+@¢2 I g 2 0,
2Tg? 9
(2.85)
— 01
Qs = —iﬁl — G291 + g12¢2 = 0, (2.86)
/—_ 02
Q6 = — Qgﬂg Q1 — gud2 + 91201 = 0, (2.87)
where
=1+ T%h =0, (2.88)
¢o = 1,0, X" = 0, (2.89)
Xab = Gab — hab ~ 0 (290)

and ¥ = x11X22 — (x12)®. As all the constraints Q’s appearing in Eqs. (2.82)-(2.87) are
combinations of ¥, ¢, and x4 in Egs. (2.88)—(2.90), we can treat these ¢, ¢, and xu
as an alternative set of secondary constraints. These constraints along with the primary
constraints (2.73), 7 ~ 0, constitute the complete set of constraints of the theory. This
is because the canonical Hamiltonian density (2.74) can be expressed as a combination
of constraints in the following manner:

Ao = \;T_gw g — o — T\/g__ic ~ 0 (2.91)

and the non-vanishing Poisson brackets between the constraints of the theory are

{(7,0), xab(T,0") } = 2 (0,11, 0, X" + Op11,0,X") 6 (6 — 0'),
{ba(T,0), Xte(T,0")} = hap(7,0")06 (0 — 0") + hoe(T,0")0y0 (0 — o)
2.92
+ (0p XH0:0, X, + 0. X 0p0, X ) 0 (0 — '), ( )
/ 1 a a /
{Wab(T, 0), Xed(T, 0 )} = (56(53 + 5d5£) d(oc—0a'),

while the weakly vanishing brackets are the same as given by (2.42). As far as the rest

of the brackets are concerned, it is trivial to see that they vanish strongly. Thus, as it
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appears, none of the constraints except 7% in the set is first-class. But we have not yet
extracted the maximal number of first-class constraints from the set (2.73), (2.88)—(2.90)
by constructing appropriate linear combinations of the constraints. However, it is highly
nontrivial to find such a linear combination in the present case as one can see from the
complicated structure of the Poisson brackets given above in (2.92). Nevertheless, one
can bypass such an elaborate procedure to extract the first-class constraints from the
given set by noting that the complete set of constraints can be split into two sectors.
i

In one sector we retain 1, ¢, and 7%, which are first-class among themselves, while

the other sector contains the canonically conjugate pairs xq, and 7. This allows an
iterative computation of the Dirac brackets [40]; namely, it is possible to eliminate this
set completely by calculating the Dirac brackets within this sector. The brackets of the
other constraints are now computed with respect to these Dirac brackets. Obviously 1,
¢4, will have vanishing brackets with 7%, y.q. Moreover, the original first-class algebra
among ¢ and ¢, will be retained. This follows from the fact that the Dirac constraint
matrix involving 7% and x.q has entries only in the off-diagonal pieces, while ¥ and ¢,
have non-vanishing contributions coming just from the bracket with one of them; i.e., x.q

(see (2.92)). The Dirac brackets of 1 and ¢, are thus identical to their Poisson brackets,

satisfying the same algebra as in the Nambu-Goto case.

We are therefore left with the first-class constraints 1) ~ 0, ¢, ~ 0 and 7% ~ 0. At
this stage, we note that the constraints 7% ~ 0 are analogous to ™ ~ 0 in free Maxwell

0

theory, where 7" is canonical conjugate to Ay. Consequently, the time evolution of gy, is

arbitrary as follows from the Hamiltonian (2.75). Therefore, we can set

Joa =0, goo = —h, (2.93)

00) are discarded from

as new gauge fixing conditions.> With that (goa, 7°) and (goo, 7
the phase-space. This is again analogous to the arbitrary time evolution of Ay in Maxwell
theory, where we can set Ay = 0 as a gauge fixing condition and discard the pair (A4g, )

from the phase-space altogether.

These gauge fixing conditions (2.93) are the counterpart of the quasi-orthonormal

conditions (2.60) and (2.61) in the Nambu-Goto case. However, unlike the Nambu-

3We cannot set gop = 0 as it will make the metric singular. We therefore set goo = —h to make it

match with the corresponding condition (2.61) in Nambu—Goto case.
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Goto case, these second-class constraints (2.93) do not render the residual first-class
constraints of the theory, viz. 1 &~ 0 and ¢, ~ 0 into second-class constraints. Therefore,
they represent partial gauge fixing conditions. This stems from the fact that go; were
still regarded as independent field variables in the configuration space whereas g,, have
already been strongly identified with Ay, (2.90). We therefore note that the calculation of
the Dirac brackets is not necessary in Polyakov formulation. This motivates us to study
the noncommutativity vis-a-vis the modified brackets {X*, X*} in the simpler Polyakov

version. For that we shall first consider the free theory in the next section.

Let us now make some pertinent observations about the structure of the symmetric
form of energy—momentum tensor, which is obtained by functionally differentiating the

action with respect to the metric. The various components of this tensor are given by

goo 20vV =9 04 1 IT?
Too = “ _ _ i
00 QTgw + 7 9o+ (goo goo T3
Tq? T
—t%KfVMerWmﬁﬂf%%d—»g%, (2.94)
go1 V=g
Tor = ———¢ —
01 2T 7 ol
T go1 _
+ E (902h11 + 901h12) X12 — go2h12X11 - 901h11X22 - 7){ ) (2-95)
Jo2 V=g
Ty = ——1 —
02 2T 7 ®2
T go2 _
+ g [(901h22 + 902h12) X12 — Gorhi2x22 — go2hooX11 — TX} ) (2-96)
Gab Tgab — Tgab
Ty = — TXa - -2 . 2.97
b 2T§¢ + 4 Xab + 2 X 7 (g22X11 + G11X22 G12X12) ( )

Unlike the case of string [22], the component Ty cannot be written in terms of con-
straints of the theory. However, the other components can be expressed in terms of these
constraints, of which y,, are second-class and have already been put strongly to zero by
using Dirac brackets, so that the form of Ty, and T}, simplifies to

Toy = oy VI

2T §

gab
Ty = — .
b 2Tg¢

Pa;

However, for Tyy we have to make use of the gauge conditions (2.93), which hold strongly

as was discussed earlier, to enable us to write Ty = —%W Let us now compare it with
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Nambu-Goto case. First we notice that 6°; appearing in Eq. (2.44) is not a tensor itself
but it is a tensor density. The corresponding tensor is ﬁ@ij. In quasi-orthonormal
gauge we have \/=¢T% = 0% = 57¢, which reproduces the canonical Hamiltonian
density (2.91) in this gauge. Also, in this gauge we have \/=¢T°, = ¢,, which matches
with 0°, in quasi-orthonormal gauge. This also provides a direct generalisation of the
string case [22]. Although, unlike the string case, the Weyl symmetry is absent in the
membrane case, we still have a vanishing trace, albeit weakly, of the energy—momentum
tensor:
, 1
T = —ﬁw ~ 0.

Brackets for a free theory. Here we consider a cylindrical topology for the mem-
brane which is taken to be periodic along o?-direction, i.e., 02 € [0,27) and o! € [0, 7].
Following the example of string case [22], we write down the first version of the brackets

as:
7,0),1,(1,0")} = (oo o°—o'"), :
X* I N} =6EAL (o', 06y (0 — 0 2.98
and the other brackets vanishing.* Here

1 ; /
op(oc —0o') = Dy Z einto=o") (2.99)
nez

is the periodic delta function of period 27 which satisfies
+m
/ 0’5, (0 — o) f(o') = f(o) (2.100)
for any periodic function f(o) = f(o + 27) defined in the interval [—7, 4+7]; and if, in
addition, f(o) is taken to be an even function in the interval [—m, 4], then the above

integral (2.100) reduces to

/07T do'A(o,0')f(d') = f(o), (2.101)

4The {X*, 1, } brackets are not affected as we implemented the second-class constraints and the gauge
fixing conditions strongly in the preceding section. They are the only surviving phase-space variables as

gi; have lost their independent status.
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where

AL(0,0) = 5y(0 — ')+ 6,(0 + o)

11 ,
= — 4+ — . 2.102
- + - HZ;AO cos(no) cos(no’) ( )

This structure of the brackets is, however, consistent only with Neumann boundary con-
ditions along o!-direction. On the other hand, we have a mixed boundary condition

(2.70) which can be expressed in terms of phase-space variables as

[gggTalXM + 4/ —gg(nHM - glgTGQX“} = 0. (2103)

ol=0,m

We notice that in Nambu-Goto formulation it was necessary to fix gauge in order to
express the boundary condition in terms of phase-space variables. However, this is not
the case with Polyakov formulation since g;; are taken to be independent fields. Using
the strongly valid equations (2.90) and the gauge fixing conditions (2.93), this simplifies
further to

[02X7 0, X, 0, X" — 01 X" 0, X,,0,X"] = 0. (2.104)

ol=0,m

Although we are using the gauge (2.93), the nontrivial gauge generating first-class con-
straints (2.88) and (2.89) will be retained in the gauge-independent analysis both here
and in the interacting case. As we see, the above boundary condition is nontrivial in
nature and involves both the 9, and 0, derivatives. But, since the coordinates and mo-
menta are not related at the boundary, we do not require to postulate a non-vanishing
{X* X"} bracket as in the case of free string in conformal gauge [22]. Therefore, the
free membrane theory, like its string counterpart, does not exhibit noncommutativity in

the boundary coordinates.

Low-energy limit. Finally, we would like to see how the results in the free membrane
theory go over to those of free string theory in the limit of small radius for the cylindrical

membrane.

The cylindrical membrane is usually taken to propagate in an 11-dimensional com-
pactified target space R x MP x S! x I, where MP? is a p-dimensional flat Minkowski

spacetime and [ is an interval with finite length. There exist at the boundaries of I two
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p-branes on which an open membrane can end. And the topology of the p-branes is given
by MP x S'. Also, the cylindrical membrane is assumed to wrap around this S'. The
radius of this circle is supposed to be very small so that in the low-energy limit the target
space effectively goes over to 10-dimensional R?~? x MP x I and the cylindrical membrane

goes over to the open string.

At this stage, we choose further gauge fixing conditions:
X' =1, X? =0o®R, (2.105)

where we have introduced R to indicate the radius of the cylindrical membrane and X?
represents the compact dimension S'.°> Before choosing the gauge conditions (2.105), the
7 and ¢® translations were generated by the constraints %1/) and ¢, respectively, just as

in the Nambu—Goto case (2.66). Now we have

{¢(r,0),X(r,0") =7} = —2II° (1,0) Ay (0, 06")0,(0%, 0",
{¢o2(1,0), X>(1,0") —06”R} = — 0. X*(1,0) Ay(c',0")0,(0%,0")
~ — RA (0!, 0'")6,(0%, "),

whereas

{gbl (1,0),X%(1,0') — 7'} = -0 X" (1,0) Ay (o, 0'1)5p(02, 0'?) =0,
{¢1 (1,0),X*(1,0') — 0'2R} = — 0 X?(1,0) Ay (0, 0/1)513(02, o'?) ~ 0.

Thus, the (partial) gauge fixing conditions (2.105) take care of the world-volume diffeo-
morphism generated by ¢ and ¢, in the sense that these constraints are rendered into

second-class while the diffeomorphism generated by ¢ is still there.

Coming back to the low-energy limit, we would like to show that the o? dependence
of all the fields except X? itself drops out effectively in the gauge (2.105). To motivate it,

let us consider the case of a free massless scalar field defined on a space with one compact

°In [31], another gauge fixing condition X! = ¢!, (7 being the length of the cylindrical membrane)
has been used. But we notice that imposition of this gauge fixing condition would be inconsistent with
the boundary condition (2.104) since, for p = 1, it yields a topology changing condition (cylinder —
sphere), R?|,1_0 » = 0, which is clearly unacceptable. Therefore, the choice (2.105) does not allow us to

1

choose X! = ¢! as well, which is not needed either for our purpose.
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dimension of ignorable size. Let the space be MP x S!, where MP is a p-dimensional
Minkowski spacetime taken to be flat for simplicity and S* is a circle of radius R which
is very small. We take 6 € [0, 27) to be the angle coordinate coorresponding to this circle
so that the metric is given by ds? = 1, dz#dz” = 1,,,dz" dz”’ + R2d6? with u, v ranging
from 0 to p and g/, v from 0 to (p — 1). The action is

S = —% / dPd0d, 0" ¢.

Separating the index corresponding to the compact dimension, we rewrite it as
1 / 1
S = —3 /dpxde (@/d)@“ o+ §89¢89¢> )

Substituting the Fourier expansion

¢(z,0) = \/LQ—W ; S (1), b = Dl
in the action and integrating out the compact dimension, we get

' 1 e n? *
S5 =3 / P (3u’¢<n>3” Om + ﬁ%)ﬁbm)) :
nez

Thus the Fourier coefficients represent a whole tower of effective massive complex scalar
fields of mass ~ n/R in a lower-dimensional non-compact spacetime. These masses are
usually of the Planck order if R is of the order of Planck length and are therefore ignored in
the low-energy regime. Equivalently, one ignores the 6 dependece of the field ¢. This can
also be understood from physical considerations. In the low-energy limit, the associated
wavelengths are very large as compared to R so that variation of the field along the circle

is ignorable.

Now the membrane goes over to string in the low-energy regime when the circle S*
effectively disappears in the limit R — 0. So the field theory living in the membrane
world-volume is expected to correspond to the field theory living on string world-sheet. To
verify this, let us substitute the Fourier expansion of the world-volume fields X*(7, o', o%)
around o?:

I 152y — L Iz 1y, ing? T
X*(r,07,07) \/%%X(n)(ﬁa Je'", X =Xl (2.106)

in the Poisson bracket (2.98) to find that the Fourier coefficients X ) (T ol) satisfy

{X{ (7, o), I (7, 6™} = 46 A L (0!, ™). (2.107)
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m

As in the case of free scalar field discussed above, the Fourier coefficients X ) (1,01) will

represent the effective (real) fields in the string world-sheet satisfying
{X[o)(r,0"), 10 (7,0")} = 64A (!, 0™), (2.108)

which reproduces the Poisson bracket for string. The sub/superscript (0) will be dropped

now onwards for convenience. Using 0, X* = R04, the boundary condition (2.104) gives

0, X*| =0 (2.109)

ol=0,m
so that we recover the boundary condition for free string in conformal gauge.®
Now we would like to show how the gauge fixed world-volume membrane metric (2.93)

reduces to the world-sheet string metric in conformal gauge. For that we first note that

the components of the metric tensor in a matrix form can be written as

Joo Go1 Go2 go 0 O
{9} =900 911 92| =1 0 hun 0],
Jgo2 g1z G22 0 0 R?

where we have made use of the first gauge fixing condition in (2.93) and by now the
strongly valid equations (2.90). Clearly, this matrix becomes singular in the limit R — 0
taken in a proper mathematical sense. It must therefore correspond to a two-dimensional
surface embedded in three-dimensional world-volume. The metric corresponding to it
can be easily obtained by chopping off the last row and last column in the above three-
dimensional metric to get (g80 h?1 ) . Now, we make use of the second gauge fixing condition
in (2.93) to replace goo by (—h). However, this h can be simplified further using the gauge
(2.105) to get R?hy; so that the above 2 x 2 matrix becomes hq, (—§2 (1)) and the diagonal
elements get identified up to a scale factor. It can now be put in the standard form,
diag (—1, 1), up to an overall Weyl factor, by replacing the second condition in (2.93) by

goo = —a’h and choosing « suitably. We also notice that using ko, = 0, the Nambu-Goto

action for the membrane becomes

SNG =-T d30' V —hooi_l,

6 Actually, we do not get (2.109) directly, rather it is accompanied by a pre-factor R?. However, this
equation is not satisfied trivially if R — 0, as this limit should not be taken literally in a mathematical
sense. This just means that R should be taken to have a very small nonzero value and presumably should

be of the order of Planck length, as we have mentioned earlier.
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which using the gauge conditions (2.105) and integrating out o2, reduces to the Nambu—

Goto action for string in orthonormal gauge:

SNG — SII\IG = —2nRT d20'\/ —hoghn.

This also shows that the string tension is ~ T'R if the original membrane tension is given
by T'. Actually one takes the limit R — 0 together with the membrane tension 7" — oo
in such a way that their product (T'R) is finite. Such a limit was earlier discussed from

other considerations in [41].

2.4 Interacting Polyakov membrane

The Polyakov action for a membrane moving in the presence of a constant antisymmetric

background field A,,, is
Sp = —g /2 o [\/—_g (970;X"0, X, — 1) + gsij’“aiXﬂan”aka’Aw ., (2.110)
where we have introduced a coupling constant e.” The equations of motion are
0, (\/—_ggijanu + gg”‘kajxvakxmw) —0, (2.111)
gi; = hij = 0, X"0;X,,. (2.112)

We note that the second equation does not change from the free case (e = 0) despite the
presence of interaction term as this term is topological in nature and does not involve

the metric g;;. The canonical momenta are

o ag _ 0 € ab v P
= o =T (V=90"x, + SeT0X X Ayp) (2.113)
0L
™ = — =0. 2.114
0 (2.114)

"As it stands, the interaction term involving the three-form field A4,,,, in (2.110) is not gauge invariant
under the transformation A — A + dA, where A is a two-form field. One can, however, make it gauge
invariant by adding a surface term 2e [, oy B; where B is a two-form undergoing the compensating gauge
transformation B — B — A. But, using Stoke’s theorem, this gets combined to a single integral over the
world-volume as [;,(A 4 dB) so that (A4 dB) is gauge invariant as a whole. In the action (2.110), A is

taken to correspond to this gauge invariant quantity by absorbing dB in A.
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For convenience, we define

~ el Y
I, =10, + —-¢ 0. X" 0, X" App = —T/—g° X,,. (2.115)

Proceeding just as in the free case, the structure of the Hamiltonian density . and the
set of constraints is obtained just by replacing II,, — ﬁu, so that we are finally left with

the following first-class constraints:

V=12 +T?h~0, (2.116)
b0 = 11,0, X" ~ 0 (2.117)

and, as argued in the free case, we adopt the same gauge fixing conditions (2.93).

For a cylindrical membrane periodic along o?-direction with o' € [0, 7], 0% € [0, 27),

the boundary condition is given by

[V=90"X,, + €0 X" 0y X" Ay =0, (2.118)

ol=0,m

which when expressed in terms of phase-space variables looks as

[gngﬁlXH — glgTﬁgX# + V —QQOIH“
+e (I + eTO X 0, X" AP 5) 0, XY Apiy) o, = 0. (2.119)

1=0,7

As in the free case, here also we use the strongly valid equations (2.90) and the gauge

fixing conditions (2.93) so that the above boundary condition simplifies to
[TagXl’@QX,,@lXH —Th X", X,0,X,
+e (TP + €T X 0 X" AP 5) D2 X" Ay = 0. (2.120)

ol=0,7
Here we notice that the above boundary condition involves both phase-space coordinates
X*#* and II,. Using the brackets of the free theory to compute the Poisson bracket of
the left-hand side of above equation with X, (7,0’), we find that it does not vanish. The
boundary condition is therefore not compatible with the brackets of the free theory. Thus,

we have to postulate a non-vanishing {X*, X¥} bracket.® For that we make an ansatz:

{Xu(1,0), X,(7,0")} = Cu(0,0") = Cu (0", 0" )op(0® — o) (2.121)

8In the case of free Polyakov string also, the incompatibility of the boundary condition with the
basic Poisson brackets forces us to postulate a non-vanishing {X*#, X"}. However, in contrast to the

interacting string, this bracket vanishes in a particular gauge—the conformal gauge.
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with
Culot, o)y =—=C,. (0", 0. (2.122)

and the {X*# II,} bracket is taken to be the same as in the free case—Eq. (2.98). At this
stage, we note that the boundary condition (2.120), if bracketted with X, (7, 0’), yields
at the boundary

[T0,X70,X,6, — T,X 02X, + T, X 0, X" Ay y AP ] 01Cr0(0,0")
+ [2T81XM82X“ — T X" 0,X,6% — T, X, 0, X" + €IT, A,
+ETHXRX (Aup A+ A, 403, ) [0:Cas (0, 0)

= e X" Ao Ay (o, dM)op(0*—0"), (2.123)

which involves both 0;C and 0>C and leads to a contradiction if we put C,,(o,0’) = 0.
This is another way of seeing that there must be a noncommutativity in the membrane
coordinates. However, there is no contradiction with C,, (¢,0’) = 0 provided 4,,, = 0,

thereby implying that there is no noncommutativity in the free theory.

Because of the nonlinearity in the above equation, it is problematic to find an exact
solution. It should however be stressed that the above relation has been derived in
a general (gauge-independent) manner. At this point there does not seem to be any
compelling reason to choose a particular gauge to simplify this equation further to enable
an exact solution. Nonlinearity would, in all probability, prevent this. This is in contrast
to the string case where the analysis naturally leads to a class of light-cone gauges where
the corresponding equation was solvable [22]. However, by taking recourse to the low-
energy approximation, we show that the results for the string case are recovered. To this
end, we substitute the expansion (2.106) in (2.121) to get

{XG

(o) (T o'), Xt (1,0™)} = 0n—mC™ (0!, ™). (2.124)

But again, as in the free case, we retain only the real fields X(“O)(T, o) = XH(r,0")

when we consider the low-energy regime. Using the gauge fixing conditions (2.105), the

boundary condition (2.120) reduces to

[(TR)0\ X, — ellP A, 0 — €*(TR)01 X\ A5 A, o) =0. (2.125)

ol=0,m
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I

0) (t,0') and Y (7,01) respectively.

Here, X* and II, can be taken to correspond to X
Thus we recover the boundary condition of the string theory in conformal gauge with

the correspondence TR < Ty and A2 < B,,,, where T; is the effective (string) tension

na)
and B, is the 2-form background field appearing in the string theory [22]. Now taking
the Poisson bracket of the boundary condition (2.125) with X,(7,0'), the low-energy
effective real fields, one gets for ;o # 2 the following differential condition satisfied by C,,,

at the boundary

TS (5)‘ - GQAM,QAP)\Q) 010)\0(01, U’l)‘

o = eAyl (0, 0'1)|

(2.126)

ol=0,m ol=0,7"’

which just reproduces the corresponding equation in string theory—see Eq. (2.31). We

therefore obtain the noncommutativity:

Cu(o',0™) = LNM ™) [0(0", 0™) — O(c" )]
+ 5 (NM)p0(ct, o) + 60", o) — 1], (2.127)

where N,, = eA, 2 and M)‘M = Tb(él’) — e2A,, n APy, while

0_1

1 1
@ 1 /1 : 1 1 2128
(U , 0 ) = — 4 — ng . _n Sln('rLO' ) COS(TLO' ) ( )

being the generalised step function which satisfies
00(ct,0™) = A, (0!, 0™). (2.129)
It has the property

Ot o) =1 for ot > o',

O(ct, o) =0 for ot < o'



Chapter 3

Maps for currents and anomalies in

noncommutative gauge theories

The occurrence of noncommutativity was discussed in the previous chapter. The study
of an open string in the presence of a background two-form field led to a noncommuta-
tive structure which manifests in the noncommutativity at the endpoints of the string
which are attached to D-branes. In the same way, for membrane interacting with a
three-form potential a nontrivial algebraic relation revealed the occurrence of noncom-
mutativity independent of any gauge or any approximation. Now we already take such a

noncommutative structure and proceed to see its implications.

There are two approaches to noncommutative field theory.! One is in terms of the
star-products which we discussed in the beginning. However, it is difficult to have local
observables in this formulation. Local quantities in noncommutative field theory are
gauge variant and no gauge invariant meaning can be assigned to their profiles. Nonlocal,
integrated, expressions can be gauge invariant (in the noncommutative electrodynamics,
for example, the action is gauge invariant) but in ordinary theory we deal with local
quantities and we would like to compare these local quantites to corresponding quantities

in the noncommutative theory.

A way out of this difficulty is provided by Seiberg and Witten’s observation that the

LA commuting (ordinary) field theory is a field theory defined on ordinary commuting space and a

noncommutative field theory is a field theory in which the coordinates do not commute.

43
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noncommuting gauge theory may be equivalently described by a commuting (usual) gauge
theory that is formulated in terms of ordinary (not star) products of commuting variables,

together with an explicit dependence on #*°, which acts as a constant ‘background’.

The Seiberg—Witten map [3] replaces the noncommuting vector potential by a function
of a commuting potential and of #; i.e., the former is viewed as a function of the latter.
The relationship between the two follows from the requirement of stability against gauge
transformations: a noncommuting gauge transformation of the noncommuting gauge
potential should be equivalent to a commuting gauge transformation on the commuting
vector potential on which the noncommuting potential depends. We shall discuss this
map in section 3.1. Maps for the matter sector [42-45] as well as for currents and energy—

momentum tensors [46] also exist in the literature.

An intriguing issue is the validity of such classical maps at the quantum level. Studies
in this direction [47-49] have principally focussed on extending the purported classical
equivalence of Chern-Simons theories (in 2+1 dimensions) in different descriptions [50,51]

to the quantum formulation.

In this chapter, we provide an alternative approach to study these quantum aspects
by relating the current-divergence anomalies in the noncommutative and commutative
pictures through a Seiberg—Witten-type map. Taking a cue from [46], we first derive a
map connecting the star-gauge-covariant current in the noncommutative gauge theory
with the gauge-invariant current in the f-expanded gauge theory. From this relation, a
mapping between the (star-) covariant divergence of the covariant current and the ordi-
nary divergence of the invariant current in the two descriptions, respectively, is deduced.
We find that ordinary current-conservation in the #-expanded theory implies covariant
conservation in the original noncommutative theory, and vice versa. The result is true
irrespective of the choice of the current to be vector or axial vector. This is also to be

expected on classical considerations.

The issue is quite nontrivial for a quantum treatment due to the occurrence of current-
divergence anomalies for axial (chiral) currents. Since the star-gauge-covariant anomaly
is known [52,53] and the gauge-invariant anomaly in the #-expanded theory, which is
in fact identical to the ordinary Adler-Bell-Jackiw anomaly (ABJ anomaly) [54], is also

known, it is possible to test the map by inserting these expressions. We find that the
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classical map does not hold in general. However, if we confine to a slowly-varying-field
approximation?, then there is a remarkable set of simplifications and the classical map
holds. We also give a modified map, that includes the derivative corrections, which is

valid for arbitrary field configurations.

After briefly summarising the standard Seiberg—Witten map in section 3.1, the map
for currents and their divergences is derived in section 3.2. Here the treatment is for
the nonabelian gauge group U(N). In section 3.3, we discuss the map for anomalous
currents and their divergences. The abelian U(1) theory is considered and results are
given up to O(6?). As already mentioned, the map for the axial anomalies (in two and
four dimensions) holds in the slowly-varying-field limit. A possible scheme is discussed
whereby further higher-order results are confirmed. Especially, O(63) computations are
done in some detail. In section 3.4 we briefly discuss the implications of this analysis on

the definition of effective actions.

3.1 The Seiberg—Witten map

We shall now briefly review the salient features of the Seiberg-Witten map. The ordinary

Yang—Mills action is given by

Sym = —i /d% Tr (F,,F*™), (3.1)
where the nonabelian field strength is defined as

Fo = 0,A, — 0,4, — A, A,) (3:2)
in terms of the Hermitian U(V) gauge fields A, (z). The noncommutativity of spacetime
is characterised by the algebra

(2%, 27], = 2% %2’ — 2 x 2 =167, (3.3)
with §°° real, constant and antisymmetric, and the star product as defined in Eq. (1.3).2

In noncommutative spacetime, the usual multiplication of functions is replaced by the

2This approximation is also used in [3] to show the equivalence of Dirac-Born-Infeld actions (DBI

actions) in the two descriptions.

31t is perhaps worthwhile to mention here that the star product also appears in other instances, for

example, in the context of charged fluids in an intense magnetic field [55].
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star product. The Yang—Mills theory is generalised to
~ 1 ~ ~
Svi=—7 / diz T (FW X FW) (3.4)

with the noncommutative field strength

~

Fo = 0,4, — 0,4, —i [EM, E,,L. (3.5)

This theory reduces to the conventional U(N) Yang-Mills theory for § — 0.

To first order in 6, it is possible to relate the variables in the noncommutative space-

time with those in the usual one by the classical maps [3]
~ 1
A=Ay — Zeaﬂ{Am 03 A+ Fpu} + O(6%), (3.6)
~ 1
Foy = Fu 70" (2{ Fua Fup} — {Aa. DFyu + 05F}) + O(6%), (3.7)

where the bracketed expressions denote the anticommutator and Dg denotes the covariant

derivative as defined below in Eq. (3.9). A further map among gauge parameters,

X = At 107 (2., As} + O(8), (3.9)
ensures the stability of gauge transformations
i[A\, A, =D, (3.9)
i [X, Eﬂ]* =D, . (3.10)

That is, if two ordinary gauge fields A, and A, are equivalent by an ordinary gauge
transformation, then the corresponding noncommutative gauge fields, A, and A’,, will
also be gauge-equivalent by a noncommutative gauge transformation. It may be noted
that the map (3.7) is a consequence of the map (3.6) and the definition (3.5) of the
noncommutative field strength. The field strengths ), and ﬁ;w transform covariantly

under the usual and the star-gauge transformations, respectively:
NFu =i[\NFul,  05F, =i [X, ﬁw} . (3.11)

The gauge fields A, (x) may be expanded in terms of the Lie-algebra generators 7 of
U(N) as A, (r) = Aji(x)T*. These generators satisfy

[T, 7" =if*eTe,  {T*, T} =d™T°,  Tr(T°T") =& (3.12)
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We shall take the structure functions ¢ and d* to be, respectively, totally antisym-

metric and totally symmetric. The Yang—Mills action (3.1) can now be rewritten as?

1 a v
Sym = - / d'z Fy FM, (3.13)
where
Fi, = 0,A5 — 0,A% + [ A A (3.14)

In view of relations (3.12), the maps (3.6)—(3.8) can also be written as

AC C ]' (6% aoCc a

AL = Ay = 07 AG (9pA5 + F,) + O(67), (3.15)
AC C 1 « aoc a a 1 e a e

i, =Fo, +56 B qeb ( o By — ALOsF), + 3 £ AaAﬁFj,,) +0(6?), (3.16)
AC (& 1 (0% aoc a

A= X 0 Pd™ 9, A" Al + O(6%), (3.17)

and the gauge transformations (3.10)—(3.11) as
AL = 9N + frreAb e, (3.18)
S\F, = fF)\ (3.19)
55 AT = g + %dabc A - % e {3, A}
= O\ + fUeARN 4 %mﬁdabcaaflgaﬁ% +0(6), (3.20)
iz o (R (V)

~ o~ 1 ~ ~
= [ERN 4 000,050 + O(67). (3:21)

3.2 Map for nonabelian currents: classical aspects

In order to discuss noncommutative gauge theories with sources, it is essential to have a
map for the sources also, so that a complete transition between noncommutative gauge
theories and the usual ones is possible. Such a map was first briefly discussed in [46] for

the abelian case. We consider the nonabelian case in this section.

4A lower gauge index is equivalent to a raised one—whether a gauge index appears as a superscript

or as a subscript is a matter of notational convenience.
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Let the noncommutative action be defined as

-~ ~ o~

S(A, %) = Sym(A) + Su(®, A), (3.22)

where 120[ are the charged matter fields. The equation of motion for A\Z is?

—= = f)y * ;‘u = —J:, (323)
0AY
where
T = O5u (3.24)
0AY 1;

Equation (3.23) shows that jcfj transforms covariantly under the star-gauge transforma-

tion:

SN PR PN -1 U
5Tt = —i [J“, )\L, Tt = FUTUN 4 S0 d 0T 00+ O6%). (3:25)

>)

Also, it satisfies the noncommutative covariant conservation law
D, x Ji =0, (3.26)

which may be seen from Eq. (3.23) by taking the noncommutative covariant divergence.
The use of Seiberg-Witten map in the action (3.22) gives its #-expanded version in
commutative space:

S(A,9) — S°(A, ) = Sh(A) + S, A), (3.27)

where S%,,(A) contains all terms involving Af only, and is given by

S = —% / d'z [FSVF;‘“ + 6P qete Fr (F,fa s+ iFgaFﬁy) + 0(92)} . (328
also, we have dropped a boundary term in order to express it solely in terms of the field
strength. The equation of motion following from the action (3.27) is

559\

dAL

= —J (3.29)

5We mention that the noncommutative gauge field EM is in general an element of the enveloping
algebra of the gauge group. Only for specific cases, as for instance the considered case of U(N) gauge

symmetry, it is Lie-algebra valued.
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where
§5¢
Ji =3 A“j : (3.30)
Ky

Expectedly, from these relations, it follows that J! transforms covariantly,

SnJt = —i[J* )], SxJl = fobegine, (3.31)
and satisfies the covariant conservation law

D,J! = 0. (3.32)

Now the application of Seiberg—Witten map on the right-hand side of Eq. (3.24) yields

539,
dAS(y)

0AL(y) | 0SK
p 0Ae () 0Y5(Y)

09a(y)
A (5AZ([L’)

the relation between jc‘j and JE:
- JAS
T = [aty = [ay @SR, @)
5Az(x)

where the second term obtained in the first step has been dropped on using the equation

of motion for 4.

We consider Eq. (3.33) as a closed form for the map among the sources. To get its
explicit structure, the map (3.15) among the gauge potentials is necessary. Since the map

(3.15) is a classical result, the map for the sources obtained in this way is also classical.

Let us next obtain the explicit form of this map up to first order in #. Using the map

(3.15) and its inverse,
(& AC 1 (e aoc Aa -
A5, = Ay 4 070 A (9,0 + B, ) + O(62), (3.34)

we can compute the functional derivative

AC

045 (x)

0758 (2 AL ()OO — ) + & FAL () AL )0 — )]

O [ AL ()25 )

+ (A A (y) + A F, (y) — dCf AL () AL (y)) 6z — y)]
+0(6?), (3.35)
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where 0 stands for d/0yP. Putting this in Eq. (3.33), we get

1

2d6dcfbadAZAgJC”

S L

_ %gau {dachabyJéj _ % (deod v 4 goed piacy gD ge v %dabdAgang +O(62).
(3.36)

Since D, JY = 9, J" — fa®J¢ A, we can use Eq. (3.32) to substitute
0,J4 = fieJr AC (3.37)

in the last term on the right-hand side of Eq. (3.36) to obtain

. 1 1 1
E= T 007 |0 (ALTL) — A P ALAYTE | = S0 E, T+ O(6%), (3.38)

av =~ c

where we have used the identity
dabdfdce 4 dbcdfdae + dcadfdbe = 0. (339)

As a simple yet nontrivial consistency check, we show the stability of the map under
gauge transformations. Under the ordinary gauge transformations given by Eqs. (3.18)
and (3.19), and using the covariant transformation law (3.31) for J#, the right-hand side
of Eq. (3.38) transforms as

N 1
Ol = [N = S0°7 | d DT EON 4 d Dy (ALTEX)

1
5 (A — ) AL TN
1
§dgcd (fabefedh fdaefebh) 42 4Ib6Jé4/\h
1
SO F L JUAC 4 O(6), (3.40)

where we have used the relation (3.39). On the other hand, using the maps (3.17) and
(3.38), and the identity

fabe]cedh + fbde]ceah + fdaefebh _ O, (341)

the right-hand side of the second relation in Eq. (3.25) reproduces the right-hand side of
Eq. (3.40). Hence,

~

85T = 8\ 1, (3.42)
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thereby proving the stability of the map (3.38) under the gauge transformations. This
statement is equivalent to the usual notion of stability which ensures that the star-gauge-
transformed noncommutative current is mapped to the usual-gauge-transformed ordinary
current, as may be verified by performing a Taylor expansion of the right-hand side of

j:é‘(J, A) + SX(Z‘LL(J, A) = j:f(J + 0xJ, A+ 0yA) and comparing both sides.®

It is worthwhile to mention that the use of Eq. (3.37) in obtaining the map (3.38) is
crucial to get the correct transformation property of fg This is because issues of gauge
covariance and covariant conservation are not independent. In an ordinary abelian gauge
theory, for example, current conservation and gauge invariance are related. Likewise,
in the nonabelian case, covariant conservation and gauge covariance are related. This
intertwining property is a peculiarity of the mapping among the sources and is not to be

found in the mapping among the potentials or the field strengths.

From these results, it is possible to give a map for the covariant derivatives of the

currents. We recall that

= oy
D, J}

aﬂ

Q7g>

1 abe | T Ae 1 abe | 71 je
™ (A - A,

~ ~ 1 PN
= 0,1 + fabe AV ¢ 4 S0 A0, A,05 Tt + O(6%), (3.43)

*

which, using the maps (3.15) and (3.38), gives

'~ E7 1 « aodc 1 eac Qa, €

Dy Ji =Dyl = 50 p [d 95 (ALD,J*) — 54 de fb dAaAgD#Jg‘} +0(0%), (3.44)
where we have used the Jacobi identities (3.39) and (3.41), and the relation (3.37). Thus
we see that covariant conservation of the ordinary current, D, J¥ = 0, implies that jg‘
given by Eq. (3.38) indeed satisfies the noncommutative covariant conservation law, ISM *

:]:’; = 0. This is also to be expected from classical notions.

At this point, an intriguing issue arises. Is it possible to use Eq. (3.44) to relate
the anomalies in the different descriptions? Indeed the analysis presented for the vector
current can be readily taken over for the chiral current. Classically everything would be
fine since the relevant currents are both conserved. At the quantum level, however, the

chiral currents are not conserved. We would like to ascertain whether the relation (3.44)

6Exactly the same thing happens when discussing the stability of the map (3.6) for the potentials.
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is still valid by substituting the relevant chiral anomalies in place of ﬁu * JAfl‘ and D, J¥.
Since the main aspects get highlighted for the abelian theory itself, we confine to this

case, and present a detailed analysis in the remainder of this chapter.

3.3 Map for abelian currents: classical and quantum

aspects

Some discussion on the use of the map (3.44), in the abelian case, for relating anomalies
up to O(0) was earlier given in [46]. In order to gain a deeper understanding, it is essential
to consider higher orders in . Keeping this in mind, we present a calculation up to O(6?%)

for two- and four-dimensional theories.

The maps to the second order in # in the abelian case are given by [56]
~ 1
A=A, - 59%1@ (93A, + Fg,)
1
+ éeaﬂeﬂma (05 (A0, A, + 2AF,,) + Fp (0,4, + 2F,,)] + O(6°),  (3.45)
ﬁw/ =L — 0" (AaaBF;w + FuaFBz/)
1
+ 59“59“’ [A005 (AwOs 4 2F, Fy) + F (AaOs By + 2F,0Fy)]
+ O(6%), (3.46)
~ 1 1
A=)— EﬁaﬁAa(‘)g)\ + EGQBQMAQ (05 (A0, ) + F3.0,A] + O(6%), (3.47)
which ensure the stability of gauge transformations
A =Dy A= A+ [N A =08 + 0779, 4,05) + O(8%), (3.48)
WA, = O (3.49)
Analogous to the nonabelian theory, the map for currents is consistent with the require-
ments that while the current J* is gauge-invariant and satisfies the ordinary conservation
law, 0, J"* = 0, the current JH is star-gauge-covariant and satisfies the noncommutative

covariant conservation law, ]3# % J# = 0. Now the currents .J* and J* are related by the

abelian version of Eq. (3.33) [46],

A,u ) = 4 v 5Au<y)
JH(x) /d yJ (y)afxu(x)’ (3.50)
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which, using the map (3.45) and its inverse,

Au= At 500, (353, + F,)

b LA, Eaﬂ (A0 A, ~ L) + S B (0,4, + 55,
+ 2 (28,05 + 0,A,0,4, + aﬁzﬁﬁau)] o6, (351)
yields the explicit O(6?) form of the source map:
JH = Jr — g8 (Aaaﬂﬂ - % agJ“) O FL 0
+ %eaﬂewaa <AHFBUJ“ — AgA0,J" + %ABFWJ“) — 00710, (AgF,,J")
+ O(6?), (3.52)

where we have used 9, J" = 0 to simplify the integrand.” The above map, up to O(6), was
earlier given in [46]. Now let us check explicitly the stability under the gauge transforma-
tions. Under the ordinary gauge transformation, dy\A, = 0,A, 0xF,, = 0, and 6,J* = 0.
Hence the right-hand side of Eq. (3.52) transforms as

OnT™ = 00, JF O\ + 0°P0"0,, (Fry J”) D5\
+ %eaﬁem 2050, (AxJ™) OuX — 05 (AxOsN\) OuJ"] + O(62). (3.53)
On the other hand,
5T =i [X, f#]* = 0980, JH 9\ + O(6%). (3.54)

Next, using the maps (3.47) and (3.52) in the above equation, one finds that the right-
hand side of Eq. (3.53) is reproduced. Hence,

S5 = 8T, (3.55)

thereby proving the gauge-equivalence, as observed earlier. Furthermore, using the maps

(3.45) and (3.52), the covariant divergence of J*,

Dy I = 0, 1 [, Ay = 0,7 — 970,795 4,, + O(6°), (3.56)

"This is essential to ensure the stability of map (3.52) under appropriate gauge transformations. A

similar manipulation was needed for getting the nonabelian expression (3.38).
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can be expressed as
~ o~ 1
D,*xJ!'=0,J"+ 0%, (Agd,J") + 590‘[39’“’8& (A, F3,0,J" — A0y (A0, J"))

+ 0(6%), (3.57)

where each term on the right-hand side involves d,,J#, so that the covariant conservation
of J* follows from the ordinary conservation of J#. This is the abelian analogue of

Eq. (3.44), but valid up to O(6?).

We are now in a position to discuss the mapping of anomalies. Since the maps have
been obtained for the gauge currents, the anomalies refer to chiral anomalies found in
chiral gauge theories. Moreover, we implicitly assume a regularisation which preserves
vector-current conservation so that the chiral anomaly 9, [Yy*{(1 + v5)/2}4] is propor-
tional to the usual ABJ anomaly 0,J [57]. The first step is to realise that the standard
ABJ anomaly [58,59] is not modified in f-expanded gauge theory [54]. In other words,

1
of = 8,“75 = @EMV/\pFMVF)\p (358)

still holds. The star-gauge-covariant anomaly is just given by a standard deformation of

the above result [52,53]:

— . . 1 P
o =D, xJY g * F. (3.59)

= 1672

The expected map for anomalies, obtained by a lift from the classical result (3.57), follows

as

— 1
A =+ 000, (A ) + 0700, [AFsg s — Ay (Aul)] + O(6%).  (3.60)

Let us digress a bit on this map. The starting point is the classical map (3.52) with
the vector current replaced by the axial one. Although current conservation is used
to derive the map (3.52), the analysis still remains valid since the axial current is also
classically conserved. Also, as discussed earlier, the retention of the term proportional to
the divergence of the current would spoil the stability of the gauge transformations, which
must hold irrespective of whether the current is vector or axial. From the map (3.52) one
is led to the relation (3.57). Now we would like to see whether this classical map persists

even at the quantum level, written in the form (3.60). As far as gauge-transformation
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properties are concerned, it is obviously compatible since the anomalies in the different
descriptions transform exactly as the corresponding currents. Corrections, if any, would
thus entail only gauge-invariant terms, involving the field tensor F},,. We now prove that
the relation (3.60) is indeed valid for the slowly-varying-field approximation, which was
also essential for demonstrating the equivalence of DBI actions [3]. Later on we shall
compute the corrections that appear for arbitrary field configurations. In the slowly-
varying-field approximation, since derivatives on F* can be ignored, the star product in

Eq. (3.59) is dropped. Using the map (3.46), we write this expression as
7 gy

1 17 67 174 v
= T35 [F" FY 4+ 0°C {AgDy (F*™ F) — 2F" F*, F4"}

Forv A

Q KO 1 174 1 17
+ 670 {éAaaﬁ (A0, (FMFY)] + 540 (F" F)
+ 24,05 (F"™ F*.F,”) + 2F" F* F3,.F,”
+ F”aFﬁ”F*KFUp} + 0(93)} : (3.61)
Next, using the identities [51]
0’ [ FN Fop + AF™ F?  Fg] = 0, (3.62)
a0 [FMQF[JFAHFUP + 2P F o Fy F,”
1 228 n2) p 1 Y AP
+ G PP g + L P FY FoFog| =0, (3.63)

and the usual Bianchi identity, we can write down

- 1 174 (87 174
o= Tgry {F MEY 4 6000 (AP )

+ %eaﬁemaa{AanaFWW — A0, (A FH F) } + 0(93)1. (3.64)

The identities (3.62) and (3.63) are valid in four dimensions and, in fact, hold not only
for just F* but for any antisymmetric tensor, in particular, for F* also. This gives a
definite way for obtaining the identity (3.63) starting form (3.62). The identity (3.63)
may be obtained from the identity (3.62) by doing the replacement F* — Frv followed
by using the map (3.46) and retaining O(6?) terms. Alternatively, one can check it by
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explicitly carrying out all the summations. Now substituting for the anomaly (3.58) on

the right-hand side of Eq. (3.64), we indeed get back our expected anomaly map (3.60).

It is easy to show that the map (3.60) is equally valid in two dimensions®, in which
case,
oy = O = e P, oy = Dk = e, P
2d = NJ5 = %glﬂ/F s 2d = DN * J5 = %EM,F . (365)
It follows from the map (3.46) for the field strength that
— 1 >
%d = %guuF
1
= 5w | I = 0°F (Au0g F™ + F*,F3")
T
1
+ 59“%“" {A,05 (AxOs F') 4+ A Fp, 0, M
+ 24,05 (F* F,") + 2F"  F5.F,"} + O(6°)]. (3.66)
In two dimensions, we have the identities
£l (F g F" + 2F" F3") = 0, (3.67)
£uw0P0" (FooFo g F" + FogFV F,Y + AF" F5 F,") = 0, (3.68)

which are the analogue of the identities (3.62) and (3.63). Likewise, these identities hold
for any antisymmetric second-rank tensor, and the second identitiy can be obtained from
the first by replacing the usual field strength by the noncommutative field strength and
then using the Seiberg—Witten map. Using these identities, Eq. (3.66) can be rewritten

as

— 1
aa = 5 | P + 0700, (A5F™)
™

1
+ 590“50'“0@ {A Fs, F" — Agd, (A F"™)} 4+ O(6%)], (3.69)

which, substituting for the usual anomaly on the right-hand side, reproduces the map

(3.60) for the two-dimensional case.

8Contrary to the four-dimensional example, the map holds for arbitrary fields. This is because the
anomaly does not involve any (star) product of fields and hence the slowly-varying-field approximation

becomes redundant.



3.3. Map for abelian currents: classical and quantum aspects 57

For arbitrary fields, the derivative corrections to the map in the four-dimensional case
are next computed. Now the noncommutative anomaly takes the form

—

o = 1672

1 v Q, 174
= o2t {F WEY 4 6000 (AP EY)

6/“,)\pF“V * F/\p

+ %eaﬁemaa{AﬂFﬁgFWFAﬂ — Agdy (A F™ F) }}

1

— W5M,,Ap9°‘59”“8aOHF’“’(%@UFA” +O(6%). (3.70)
The last term is the new piece added to Eq. (3.64). Thus, the map (3.60) gets modified

as

A = +0°P0, (Agd) + %eaﬂewaa (A Fap — ApOy (An?)]
1

af nko v A 3
— m@uy)\pe 0 (% (3HF“ 8/38UF p) + 0(9 ) (371)
This is reproduced by including a derivative correction to the classical map (3.52) for

currents:

. 1
Tl = gt — goP (AaagJ;f -3 aﬁjg) T O i

1 1
+ 596“50’“’8& <A,€F30J§f — ApA.0,JE + §A5FMJ§‘) — 0°P051 0, (AgF, JY)

1
T Tammanl*P0H D F0.0, + O(6°), (3.72)

with the correction term given at the end. It is straightforward to see the contribution
of this derivative term. Since this is an O(#?) term and we are restricting ourselves to
the second order itself, taking its noncommutative covariant derivative amounts to just
taking its ordinary partial derivative. Then taking into account the antisymmetric nature
of 0" it immediately yields the corresponding term in Eq. (3.71). We therefore interpret

this term as a quantum correction for correctly mapping anomalies for arbitrary fields.

It is to be noted that Eq. (3.71) can be put in a form so that the #-dependent terms

are all expressed as a total derivative. This implies

/d4;1: D, x J! = /d43: 0Tt (3.73)

reproducing the familiar equivalence of the integrated anomalies [51-53,60].
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We shall now give some useful inverse maps. From maps (3.51) and (3.52), the inverse

map for the currents follows:

~ ~ o~ 1~ ~ ~ -~
JH = J" 408 (Aaaﬁﬂ -3 aﬁﬂ) — 0" Fo5J"

- Lo [Aﬁaﬁﬁmﬁ» - A A0,0, 7~ 28,0,0,0,7 ~ 11,0, 7"
428,05 (B B?) + £ Funop ' — BB 7
2 2 4
— goBgrng, (Egﬁmf”) +O(6%). (3.74)
Taking the ordinary derivative and doing some simplifications yields
o J" = ﬁu * JH— 0%, |:A\ﬁ (ﬁu * j“)}
+ %eaﬂemaaaﬂ [ﬁgﬁ(, (f)u X fﬂ)} +O(6%), (3.75)
which may be regarded as the inverse map of (3.57). Indeed, use of this relation reduces
the expression on the right-hand side of Eq. (3.57) to that on its left-hand side which

shows the consistency of the results. This also proves that the covariant conservation of

JH implies the ordinary conservation of J*, as expected.

Likewise, inverting the relation (3.46), we obtain
FMV = F\uu + 99 <A\aaﬁﬁﬂu + F\uaﬁﬁu>

P 1~ ~ . . .
4 go0gno {AaaﬂAnaoFﬂy + 54020505 Fyuy + Aads (FWFW

)
SN—
+
e

Q
o)
&
o)
It—l

+ O(6%).
(3.76)

If we now write down the usual anomaly as

1
o, A =
1672 1 1672

1
E (F’“’ * Y + geaﬁemaaaﬁFWagaaFAp + 0(93)) :
(3.77)

and use Eq. (3.76) on the right-hand side, we get

1

VIAp
T el =

1 . . PN .
e [P s P (3, (P )

b 10070,0,{ 3,4, (P« ) }}

1 af gko oy R
+ W&?W,\,ﬂ 56 8Q0RF“ 8580FAP —+ 0(93), (378)



3.3. Map for abelian currents: classical and quantum aspects 59

where we have used the identities (3.62) and (3.63) with the replacement F'* — Fv.

Thus we have the map for the anomalies:

ot =By %0 [ 3y (B, 7)) 20,0, 1,3, (B, )]
1

+ 0°%0"7 0,0, " 050, F* + O(6). (3.79)

In the slowly-varying-field approximation, the last term drops out. Then it mimics the
usual map (3.75). Again, as before, it is possible to find the correction term for arbitrary

fields and write down the map for anomalous current as
wo_ B (7 a5 Ln g pa s 78

1 T I U P
- éeaﬂem {AﬁaﬁFmJg — An A 050, I — 2A,05A,0, T — 5,451%5’0[]5

5 aaﬂ (an]g> +§FO¢HF06JE/:_ Z a/BF/iUJéA
gaﬁenua A\ o qv 1 a3 ki ov Ap 3
- o ] ,{VJ5> — mﬁm,)\pe 0 8aF 8,€8ﬁF + O(Q ), (380)

which reproduces Eq. (3.79) correctly. Substituting this map, the expression on the right-
hand side of Eq. (3.72) reduces to that on its left-hand side, which shows the consistency

of the results.

Now we provide a mapping between modified chiral currents which are anomaly-free
but no longer gauge invariant. In the ordinary (commutative) theory, such a modified
chiral current may be defined as

1
JH=Jt — @eﬂ”APAyFAp. (3.81)

By construction, this is anomaly-free (9,J* = 0) but no longer gauge-invariant. It is
possible to do a similar thing for the noncommutative theory. We rewrite Eq. (3.72)
by replacing JE in favour of J*. The terms independent of J*, including the quantum

correction, are then moved to the other side and a new current is defined as

-~

TH = J' + X*(A), (3.82)

where all A,-dependent terms lumped in X" have been expressed in terms of the non-
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commutative variables using the Seiberg-Witten map. Thus we have

Tt =J" — 6 (Aaagjﬂ - % agj“) + 0" FopJ"”
+ %eaﬁemaa (AKFﬂgjﬂ — AgA 0, T + %Aﬁij“) — 0°P0" 10, (AgF 0, T")

+O(6?).
(3.83)

Since the above equation is structurally identical to Eq. (3.52), a relation akin to (3.57)

follows:
D, J" = 8,T" + 0°°0, (A30,T")
1
+ 590‘59“"8@ (A F5,0,T" — Agdy (A0, T")] + O(6%), (3.84)

which shows that 9,J* = 0 implies ]5# * J* = 0. We are thus successful in constructing
an anomaly-free current which however does not transform (star-) covariantly. It is the

X~ appearing in Eq. (3.82) which spoils the covariance of T,

Higher-order computations. Results discussed so far were valid up to O(6?). A nat-
ural question that arises is the validity of these results for further higher-order corrections.
Here we face a problem. The point is that although the map (3.50) for sources is given
in a closed form, its explicit structure is dictated by the map involving the potentials.
Thus one has to first construct the latter map before proceeding. All these features make
higher- (than O(6?)) order computations very formidable, if not practically impossible.
An alternate approach is suggested, which is explicitly demonstrated by considering O(6?)

calculations.

Consider first the two-dimensional example. The star-gauge-covariant anomaly, after

an application of the Seiberg-Witten map, is given by
—_~ 1 ~
o = 5w F" =y + ) + yd) + ) + 00", (3.85)

with %((?), %((11) and %((12) respectively being the zeroth-, first- and second-order (in 6)
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parts already appearing on the right-hand side of Eq. (3.69), and

@ _ 1 B o ot
%d = —Eé“w,g ﬂ@ 0 ¢

X [Aaé?ﬂ {Aﬁag (AT(?gF"” + 3FMTF§V) + QFUT (A,iagF“V + 3FM,€F§V)}
+ AaF30y (A;OcF™ + 3" F") + 2F 5. Fyr (AaQeF™ + 3F* o FV)], (3.86)

where the O(6%) contribution to the map (3.46) has been taken from [56].

Now our objective is to rewrite the O(6%) contribution in a form akin to O(6) and
O(6?) terms; namely, to recast it as something proportional to the commutative anomaly
(e, ™), and also as a total derivative. Expressing it as a total derivative is necessary
to preserve the equality of the integrated anomalies ( [d®x s,u,ﬁ w o= [d*ze,, FH) [45,
46,51-53].

The O(#?) contribution may be expressed as

1

427(3) _ =
2d 127

£ 0700707 [Aaaﬂ {Aﬁaa (ATﬁgF“” - g TgFW) + QA Fyr D ™
3 w
+ Z (FnoFﬂf - 2FI€TF£O'> F
+ Ay Fy {ag <A785F‘“’ - g TJW) + 2Fma§FW}

1 3
_ (FaTanFoﬂ + gFaﬂFno‘FTf — ZFO‘BFRTF50'> F:U‘V:| ,

(3.87)
where, in addition to the identities (3.67) and (3.68), we have also used
euw0°P0" 0™ (FM For Fe Fop + F* FyY Foy Feg
4 FM Fy Fe" Fag + 6F" o s Fyr ) = 0, (3.88)

which follows from the identity (3.68) by doing the replacement F* — F followed by
exploiting the Seiberg—Witten map and retaining O(6%) terms. We notice that each term
on the right-hand side of Eq. (3.87) contains the usual anomaly, as desired. After some
algebra, the right-hand side of Eq. (3.87) can be written as a total divergence, which
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gives us the final improved version of the map (3.69) as

—~ 1 1
oa = gy | P14 0700 (AGF™) 4 5000 Do {AcF o I — 4505 (AF™)}
s

1 3
+ geaﬁemeT&aa{FW (QATanFoﬁ — 245450, Fre = 5 As P Fio

1 1
+ Z—lAgFKUFTé — Aﬂ&, (A.,-Fé,{) — QAKFUﬂFTé')
+ O " [AgAy (05 Ar +2F,) — Ar (AxFps + AgFro)]
+ AﬁAKATaJaEFW} + 0(94)1 :

(3.89)

Thus, in two dimensions, the noncommutative anomaly can be written in terms of the

usual anomaly at O(6?) also:

— 1
o = ha + 070 (Aptha) + §9°‘ﬁ 0% O { AxF o Goa — ApOy (Axaa) }
3

1
+ éeaﬁemmfa& {%d (QATFEKFUB = 24540, Fre — S AgFir Fig
1 1
+ Z—lAgF,meg — Agag (ATF£,€> — éAangng)
+ Ocdtog { ApA, (0,A, +2F,,) — A, (AxFps + AgFlp)}
+ ABAKATa,ag%d} +0O(6%). (3.90)

If the anomalies in four dimensions also satisfy the above map, then clearly we have

a general result, valid up to O(6?). Now it will be shown that, in the slowly-varying-field



3.3. Map for abelian currents: classical and quantum aspects 63

approximation, such a relation indeed holds. We have

S A
—— " F
1672 H7F

1

[FWFM +0°70, (AgF" F™)

+ %eaﬁemaa {AcF3, F*™ F¥ — Agd, (A F™F)}

1 3
+ geaﬁemefaa{ww (QATF&FUB — 243405 Fre — 5 AFer e

1 1
+ ZA@FHUFTE — Agao (ATF&C) — §AHF05FT§)
+ 0c (F™ ) [AgA, (0, A, + 2F,;)
— A; (AxFps + AgFiis )]
+ ApA A 0,0 (FM F™) } + 0(64)} .
(3.91)
In obtaining this equation, it is necessary to use the identities (3.62) and (3.63), and a
new one (given below), which follows from the identity (3.63) by doing the replacement
Fr — R followed by using the Seiberg-Witten map and retaining O(63) terms:
EuaplP0" 0 (6F”aF5”FAHFMF§p + 6F" F?  Fpo Fpr Fe?
+ FW N FPFo Feg + F'EA F, Fe’ Fop

1 1
+ EF“TF{FAHFU”FM + 5FMWFMl«gﬁzﬂ,ﬁ) = 0. (3.92)

Obviously, Eq. (3.91) reproduces the map (3.90), with JZ?Q\d and kg replaced by the

corresponding expressions in four dimensions. This proves our claim.

Starting from the results in two dimensions, it is thus feasible to infer the general
structure valid in higher dimensions. This is an outcome of the topological properties
of anomalies. Proceeding in this fashion, the map for the anomalies can be extended to

higher orders.
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3.4 Discussion

To put our results in a proper perspective, let us recall that the Seiberg—Witten maps
are classical maps. A priori, therefore, it was not clear whether they had any role in the
mapping of anomalies which are essentially of quantum origin. The first hint that such a
possibility might exist came from Eq. (3.57), or Eq. (3.60), where the covariant derivative
of the noncommutative covariant current was expressed in terms of the ordinary deriva-
tive of the commutative current. Indeed, to put the map in this form was quite nontrivial.
Classically, such a map was trivially consistent, since both the covariant divergence in
the noncommutative description and the ordinary divergence in the usual (commutative)
picture vanish. The remarkable feature, however, was that such a map remained valid
even for the quantum case in the slowly-varying-field approximation which was checked
explicitly by inserting the familiar anomalies in the different descriptions (the planar
anomaly for the noncommutative description and the ABJ anomaly for the commutative
case). Incidentally, the slowly-varying-field approximation is quite significant in discus-
sions of the Seiberg—Witten maps. For instance, it was in this approximation that the
equivalence of the DBI actions in the noncommutative and the commutative pictures was

established [3] through the use of Seiberg—Witten maps.

Our analysis has certain implications for the mapping among the effective actions (for
chiral theories) obtained by integrating out the matter degrees of freedom. The point is
that the anomalies are the gauge-variations of the effective actions and if the anomalies
get mapped then one expects that, modulo local counterterms, the effective actions might

get identified, i.e., it suggests that
W (A\(A)) = W (A) + local counterterms, (3.93)

where W and /I/I7 denote the effective actions in the commutative and noncommutative

formulations, respectively. Taking the gauge-variations (with parameters A and :\\), yields

/ dz (ﬁu* j;;) A = / Az (9, T8\ + / d*z (8,A") A, (3.94)
where
w__ - B 2
J = 5& [H, Jt 5A”M (3.95)
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and A* accounts for the ambiguity (local counterterms) in obtaining the effective actions.
Now Eq. (3.70) expresses the noncommutative anomaly in terms of the commutative
variables. Using that result and the Seiberg—Witten map (3.47) for the gauge parameter
X simplifies the left-hand side of Eq. (3.94):

SN N~ 1 NN
/ d'e (Dyx 1)+ 3 = / a'z (D,x J2) A = T / d'z (B« F7) X
T

1
= o3 / d'z (F*F») X+ / d*z (0.A%) A, (3.96)
where Eq. (3.70) and the map (3.47) have been used in the last step, and
« 1 1 af wy mAp af nko 1 uy mAp 1 uy AP
AY = Wgu,,)\p 59 AgFHM F7P + 0%°0 gAxFﬁaF F7P + éAﬁan (AUF F )

- %aHFWagaUFM)} +0(6°),
(3.97)

thereby proving Eq. (3.94) and establishing the claim (3.93).

We further stress, to avoid any confusion, that the relation (3.93) was not assumed,
either explicitly or implicitly, in our calculations.” Rather, as shown here, our analy-
sis suggested such a relation. Its explicit verification confirms the consistency of our
approach. It should be mentioned that the map among anomalies (3.60) follows from
the map (3.52) for currents through a series of algebraic manipulations. This does not
depend on the interpretation of the anomaly as gauge-variation of an effective action.
If one sticks to this interpretation and furthermore assumes the relation (3.93), then it
might be possible to get a relation, like Eq. (3.94), involving the integrated version of
the products of anomalies and gauge parameters. Our formulation always led to maps

involving unintegrated anomalies or currents, which are more fundamental.

We also note that the map (3.60) for the unintegrated anomalies, which follows from
the basic map (3.52) among the currents, was only valid in the slowly-varying-field ap-
proximation. The suggested map (3.93) among the effective actions, on the other hand,

led to the map (3.94), involving the integrated anomalies and the gauge parameters, that

9Indeed, as already stated, there cannot be any a priori basis for such an assumption since the
classical Seiberg—Witten map need not be valid for mapping effective actions that take into account loop

effects.
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was valid in general. For the pure integrated anomalies we have the familiar map (3.73)

that has been discussed extensively in the literature [51-53,60].



Chapter 4

Commutator anomalies 1n

noncommutative electrodynamics

The subject of anomalies in gauge theories has been studied extensively in the liter-

1 Ever since the importance of noncommutative manifolds was realised?, it has

ature.
been natural to investigate the structure of anomalies in such a setting. Various re-
sults have been reported in this context. In particular, it has been noted [64] that,
due to noncommutativity, two different currents can be defined even for a U(1) the-
ory. These are the star-gauge-invariant and the star-gauge-covariant currents which are
defined according to their distinct gauge-transformation properties. In this chapter we
shall be exclusively dealing with the star-gauge-covariant currents. Now the covariant
divergence of the star-gauge-covariant axial current reveals an anomaly—this is the star-

gauge-covariant anomaly [52,53,65] which is basically the covariant deformation of the

usual gauge-invariant ABJ anomaly [58,59].

The next logical step would be to compute the anomalous commutators involving the
currents and see their connection with the anomaly, as happens for the commutative de-
scription [66-68]. The structure of the anomalous commutators in the noncommutative
setting, however, is lacking in the literature. This chapter is aimed at investigating this

aspect. Here we would like to mention that the computation of noncommutative commu-

1See [61,62] for reviews.

2See [11,63] for recent reviews.

67
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tators from loop diagrams following the ‘Bjorken-limit’ approach might not be practically
feasible. Even in the ordinary case, the computation of anomalous commutators is much

more involved than that of the divergence anomaly.

Based on the various results of the previous chapter, here we provide an approach
to obtain the structure of the anomalous commutators in a noncommutative theory.
We exploit the maps for fields and currents in a U(1) gauge theory in noncommuta-
tive and commutative (usual) descriptions [3,19,46] to express the commutators in the
noncommutative theory in favour of their commutative counterparts, where the results
are known [66,67]. Using these known results we obtain the explicit structure for the

anomalous commutators in the noncommutative theory.

The new results on anomalous commutators in noncommutative electrodynamics are
by themselves interesting. Their compatibility with the noncommutative divergence
anomalies, exhibited through consistency conditions derived here, further supports our
analysis. Moreover the computational method provides a nontrivial application of various

Seiberg—Witten maps.

After enumerating the known results for ordinary anomalous commutators in the
first part of section 4.1, we compute the commutators in the noncommutative theory
in the second part. Although we have considered massless quantum electrodynamics
(QED) here, the structure of these commutators remains equally valid for the massive
case as well. Explicit results are given for the current—current as well as the current—field
commutators. The compatibility of our results for these anomalous commutators with
the noncommutative covariant anomaly has been established in section 4.2 through the
use of certain consistency conditions. It is known that in the ordinary theory there is a
possibility of the presence of additional terms in some of the commutators. Last part of

this section deals with the implications of these ambiguities on our scheme.

4.1 Anomalous commutators

Our method of computing the commutators is straightforward. The maps connecting
the variables in the two descriptions will be used to express the commutators in the

noncommutative theory in favour of their commutative counterparts. From a knowledge
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of the latter the former is easily obtained. We shall restrict to the first order in 6. Let

us enumerate the various anomalous commutators in the ordinary theory.

4.1.1 Anomalous commutators in the ordinary theory

We consider massless QED given by the Lagrangian density
. 7 1 vy T
L = lw’Y’@;ﬂﬂ - ZF/WFM - WY’WA;“ (4'1)
where the (+, —, —, —) signature has been used. We shall take gg193 = €103 = 1, B = Fy;,
B! = —;;10; Ay, with i, j, k = 1,2,3. The equations of motion for the fields are
O = A, (4.2)

9, F" = Jh, (4.3)

where J# = ¢y#1). The usual current conservation, d,J* = 0, follows upon using the

equation of motion. The canonical anticommutator relations of the spinor fields are

{1 e, ), 65y 1) } = dasd(x — y). (44)

with a, 3 = 1,...,4, the labels of the spinor components, and the canonical commutation

relations of the photon fields in the Feynman gauge are

[AM<X7 t)’ aOAV (Y> t)] = - inlw(53 (X - Y)a
[AM<X7 t)v AV(Y’ t)] = [aOAM(X’ t)? 8014”(}’, t)] =0.

(4.5)

It has been shown [58,59] that the axial-vector current does not satisfy the usual di-
vergence equation d,J¢ = 0 expected from naive use of equations of motion.® Rather
it satisfies the anomalous divergence equation given by Eq. (3.58). The commutators?

involving the axial current which are relevant in the present context are [66,67]

eijnFin(y) 07 6% (x — y), (4.6)

i
472

Soo(z,y) = [Jo(x): Jg(?J)]

3Whether the index ‘5’ appears as a subscript or as a superscript is a matter of notational convenience:
JE = ytysp, TS = gy

4All the commutators appearing in this chapter are equal-time commutators. By [Jo(z), J§(y)] we
mean [Jo(x,t), J§(y,t)], and so on. Likewise, Soo(w,y) appearing in Eq. (4.6) is to be understood as

Soo(X,y,t), and similarly for others.
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Sulr,) = (@), J3)] = ~ gz oy (000 (x — ), (17)
i) = [Jo(e), J2(w)] = geunFos (0)OF0°(x — ), (4.8)
Lou,9) = [Ao(0), J3(w)] =0, (49)
Moy, (z,y) = [80A0(m), Ju(y)] =0, (4.10)
Mao(,y) = [A), BW)] = fogzunEnd’(x ), (111)
Min(,) = [00A2), T3, (0)] = g Fon*(x — ). (4.12)

All of the nonvanishing commutators given above are anomalous in the sense that if
they are calculated by naive use of canonical commutation relations they vanish. These
brackets are compatible with the axial anomaly (3.58) as shown in [66,67]. Some other

commutators which will be useful later are

[Ju(@), Ao (y)] = [Jo(), B0 Ao ()] = 0. (4.13)

4.1.2 Anomalous commutators in the noncommutative theory

Now we are in a position to compute the anomalous commutators in the noncommutative
theory. In the context of the ordinary theory it is well-known that the anomalous commu-
tators are a different manifestation of the ABJ anomly. Since the standard ABJ anomaly
is not modified in @-expanded theory, we argue that the set (4.6)—(4.12) of commutators
remains valid in the #-expanded theory also. We further note that the equation of motion
for the photon field in #-expanded theory will differ from (4.3) by an O(6) term. This will
modify the canonical commutation relation [A;(xz), dyA;(y)] given in Eq. (4.5), which will
have an O(f) extension. But we need not compute this O(€) correction explicitly since
later we shall use this particular commutation relation in such terms which will already
involve #. The commutators [Ay(z), 0 A, (y)] and [A,(x), 0y Ao(y)] will not have any O(f)

extension.

Although our main interest is in the current—current commutators, we shall compute
some other commutators as well which will later be useful when we discuss the consistency

conditions. Now onwards we shall take 6 to be of ‘magnetic’ type so that 8% = 0. Using
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the maps (3.52) and (3.72), and Eq. (4.13), we find

Soo(, ) = | (@), B )]
= Soo(w,y) — 0™ [04 (Amn(y)Soo(7,y))
+ 0% (Am () Soo(,y) + Jo(2) Lo (2, )] + O(6?), (4.14)

which may also be interpreted as a Seiberg-Witten-type map. Proceeding similarly, we

obtain®

~

Siola.y) = | Ji@). J)]
= Sio — 0™ [0} (A (y)Sio) + Oy (Am(x)Si0 + Ji(2) Lino)]
— 0" [E%(2)Sg0 + Jo(2) (8% Loo — Mino) — Ju(@) (0% Lo — 0% Lino)]

+0(6%),
(4.15)
S, y) = | To(a), T(y)
= Soi = 0" [0 (An(y)Sor) + 95 (An(2)S0i + Jo(w) L)
— 0™ F,,% () S0z + O(6%). (4.16)

The field-current algebra is likewise computed using Egs. (3.45), (3.72) and (4.5):

Luo(z,y) = |Ao(a), T3 (0)]

1
= Loy — 0™ [83 (Am(y)Loo) + §Am($) (205 Loo — M)

# 5L (Oua(a) + Fo(a)] + O(8), (417

. 1
Lo; — 0™ F," (y) Log — 6™ {353 (Am(y)Los) + §Am($) (20, Loi — My;)

(4.18)

°To save space we omit arguments, writing S, L., and M,, instead of S,,(z,y), L, (z,y) and

M,-(x,y) respectively.
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)

w(@y) = [Ai@), By)]
1

- [az Ay Lio) + 5 Am(w) (205 Lo — O Lyo)

(
+ %Lmo (0pAi(x) + Foi(x)) | +O(6?), (4.19)
Lin(a,y) = |A@), To(y)
= Lim + i0™J35%(x —y) — 0™ F,%(y) Lis
_ %eﬂc 1207 (A;(y)Lim) + Lym (91 As(z) + Fra(z))
+ A;(x) (207 Lipy — 07 L)) + O(6%), (4.20)
Moo(,y) = o Aolx), T3 (v)]
= Moo — 9’”"{5’% (A (y)Moo) + %Am(l’) (207 Moo — [0000An (), J ()])
+ %Lmoﬁo (90 Ao() + Foo()) + 30 Am ()0 Log

— aon(:c)Mno} +0(6?), (4.21)

—

Mio(w,y) = [BoAi(a), T ()]
= Mo+ 100 (J§53(x - Y))

-

1
(Am(y) Mio) + 500 Am () (207 Lio — 0F Lino)
1 1
- §Lmoao (0, A;(z) + Fi(x)) + éagﬂ (An(2) M)

—

Mi(z,y) = [30121\1‘(55)7 jl?@)}
= My + 10707 (J353(x — y)) + 10513 (y)0r8% (x — y)
— 0" (17 (9)0%8*(x = y) + Fn” (y) Mig)
1
g [ag( () Mit) + 500 A () (205 L — OF L)

1 1
+ §Lmk80 (OnAi(z) + Fri(x)) + 56190 (An(7) Mg

+ Fi(2) M, + A (2)05 My, | + O(6%). (4.23)

Now we use the relations (4.6)—(4.12) to substitute for the commutators appearing on the
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right-hand sides in Eqgs. (4.14)-(4.23). In order to compute [0y A, (), J3(y)] appearing
on the right-hand side of Eq. (4.21), we make use of the equation of motion. The equation
of motion (4.3) of the usual theory in the Feynman gauge reads 9y0p A, — V2A, — J, = 0.

Therefore the equation of motion of the noncommutative theory in terms of the usual

variables,
A, —V*A, — J,+0(0) =0, (4.24)
implies
[0000An(2), J5 (y)] = V7 [An(2), Jo ()] + [Ju(2), J5(y)] + O(0), (4.25)

which can be computed using Eqgs. (4.7) and (4.9). Thus Egs. (4.14)—(4.23) become

Su0(e,) = TenFin(0)0F0*(x — y)
e [0 (A P ()00 (x — )
+ 05 (A (2) Fii(y)970°(x — y))] + O(6°), (4.26)
ol ) = ~ ey (WL (x )
™ Tengt (Fool) Fie(0)050°(x = 3) + Foun () Foy (1) O10° (x — )
— o Fip o (x — y)]
b0z [ (Au(y) Poy ()05 (x — y)
+ 0, (An (@) Foj (2)010°(x — y)) ] + O(6%), (4.27)
S, ) = TseunFos ()16 (x — )
— 0wt (o) Fie0)050°0x — ) — Foun(y) iy (1) 050° (¢ — )
2 [0 (A Foy ()75 (x — )
05 (An(e) Fos(0)05°(x — 3))] + O(6%),
(4.28)
Too(z,y) = gemn%k/x Fad®(x —y) + O(62), (4.29)
Loi(z,y) = @em%mmmmﬁ(x —y) +0(6%), (4.30)

Lio(w,y) = O(6%), (4.31)
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~

Lim(z,y) = i0™J38% (x — y) + O(6%), (4.32)

— i 1
M()o(l’, y) = 4_71-29mn€njk (Gonij(S?’(x — y) — EAm(x)Foj(x)az(S?’(x — y))

+ 0(92), (4.33)
Ma(w,y) = 7= Fud®(x = y) + 1670} (J36*(x - y))
i 1
_ Hgmn [gmjk {F Find®(x —y) + §af (A Fnd®(x — y))}
+ e AmOn Find® (x — y) | +O(62), (4.34)
Mir(,y) = e Fos° (x — ) + 10702 (20 (x — y)) + 10" 13 ()95 (x — y)

s 2
e i
— 1(9]“ {Jf(y)afnég(x — y) + Hé‘zjn (Fmof;}'n + anFOj) (53(X — y)}

i 1

472
e A B0 (x — y>] o).
(4.35)

We have thus obtained various anomalous commutators up to the first order in a magnetic-

type 6. These expressions are given in commutative variables. Using the inverse maps,

o1 . U
Ay = A+ 5022, (054, + Fu) +0(62), (4.36)
Fuy = F, + 0% (ﬁaagFW +F, ng) +O(6?), (4.37)
. U IS N
Ji = Ji 4 P (Aaaﬁjﬂ -5 aw#) — 9 FL TP+ O(6?), (4.38)

with 6% = 0, we can express them in terms of the noncommutative variables:

~ i ~
Soo(,y) = 4—7T2€iijjk(3/)af53(X -y)
i ~ ~ ~ ~
130"t | B () P (0)070° (¢ = ) = Fun()0% (An(0)070°(x = )

472
— Fu(y)or (Em(x)afé?’(x — y))} +0(0%), (4.39)
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Sl ) = ~ g Fos (005 (x ~ )
— 38" [eust (Bno) Bi0)036°(x — 3) + Foun () Bog (1) 040°(x — )
— emgrJoFjnd%(x — .V)}
e [Fon0) Bug ()05° (x — y) = B ()08 (A ()015°(x — )
~ Foj(@)2% (An@)08*(x = y)) | + 00, (440
Soi(z,y) = i Q%kFog( )0¢6°(x —y)
— 0 (o) F)050°(x — ¥) — B0 By (0)050°(x — )
b0 [Fon () Fus0)015°0x — v) — o) (An(w)0fs*(x )
— Foy )% (An@)0p0*x—y)) | +00%), ()
Too(z,y) = 8—;9%%@@@3 (x —y) + O(6%), (4.42)
Tos(z,y) = F;emngnikﬁmﬁ%a?’(x —y)+06%), (4.43)
Lio(z,y) = O(6%), (4.44)
Lim(z,y) = i0™ J36%(x —y) + O(6?), (4.45)
Vi, 1) = 50" (90 AaFpd*(x = 3) = 320 Fo@)0}0°x - )
+ 0(6%), (4.46)
Mol 9) = pgeunFd(x—y) + 10708 (7350~ )
- 4—129’”” {emjk {F Fid®(x —y) + %8;” (A Fiud®(x — y))}
-
— eijuFim Fopd®(x — y)} +O(6?), (4.47)
Ml y) = e Fosd*(x — y) + 10703 (T0°(x — ) + 16973 )080% (x — )

o i (noa = on
— i6* {j?(y)agzé?’(x -y)+ mﬁz‘jn (FmOan + anF0j> 8 (x — Y)}
i mn n <3 1 z (1 7 53
— 4—7_(29 Emkj FmFOj(S (X — y) + 582 <AnF()j(5 (X — y))

o Fux = )] + O (.48

This completes our obtention of the anomalous commutators in both commutative as
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well as noncommutative variables.

4.2 Consistency conditions and the anomalous com-

mutators

Just as the anomalous commutators in the usual theory are subjected to certain con-
sistency conditions [66,67], we now show that those in the noncommutative theory also
obey certain consistency conditions, implying their compatibility with the noncommuta-

tive covariant anomaly (3.59).

To obtain the consistency criteria, we begin with
00Soo(w,y) = 0 | o). Bw)| = [06To@). Bw)| + [B@) i) . (449)
In view of Eq. (3.56), it follows from D, x J* = 0, and D, » J&" = o that (for 0% = 0)

O I + 0" 0y T, A, + O(62), (4.50)

do
0 OS2+ 070, JLD, A, + o + O(62). (4.51)

Jo =
o

Using these to substitute for dyJy and 80:];5, Eq. (4.49) yields a consistency relation among

the anomalous commutators of the noncommutative theory:
00500 (., y) = 02, Smo(@, y) + 04.Som(, y)
+ 0 (0020 ()05, S0, 9) + 0,3 (4)94,S0, (2, 9)
+ 0n T @)Ly (x.9) + O L ()% | o). A, (0))
+ [ Jolw), )] + 0(6?). (4.52)

The essentially new ingredient is the last bracket involving the anomaly. Using the maps

(with 6% = 0) for Jo and o/ given in Egs. (3.52) and (3.60) respectively, we get
[To(@), ()| = (), (y)
— 0™ (0% [Jo(@), An(y) ()] + 5 [Am(2) Jo(2), 2 (y)]) + O(6%),

which, on substituting for the anomaly, & = (1/167%)e,,,,F" F*, and using the rela-
tions (4.5) and (4.13), yields

o~

(@), 7T0)] = 0™ 2o o) ()56 (x — y) + O(8%). (1.53)
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We observe that the § — 0 limit of the condition (4.52) is
8OS’OO(xa y) = aszsmO(xv y) + angOm(xa y)7 (454)

which is easily verified using Eqgs. (4.6)—(4.8). To show that Eq. (4.52) indeed holds is also
straightforward. Equation (4.53) gives the last term on the right-hand side of Eq. (4.52).
The commutator [Jo(z), A\#(y)] occurs in an O(#) term, and therefore it can be replaced
by [Jo(x), A,(y)] which vanishes because of Eq. (4.13). The other terms in Eq. (4.52)
are also known in view of Eqs. (4.26)—(4.35). Substituting for all these commutators,
we find that Eq. (4.52) is satisfied. Alternatively, the verification of Eq. (4.52) can be
done in noncommutative variables by exploiting Eqs. (4.39)—(4.48) and the one obtained
by using the inverse maps (4.37) and (4.38) on the right-hand side of Eq. (4.53) (this
amounts to just replacing the usual variables by the noncommutative ones, since it is
already an O(f) term). This shows that our anomalous commutators are compatible

with the noncommutative anomaly.

As another example of a consistency condition, we note that

~

o |A(2). B = [0 (@), Bw)] + |4, 0T w)].
which, invoking the notations introduced earlier, can be rewritten compactly as
oLunlr,y) = Mo(w,y) + [A(2), T3 0)] (455)
Using Eq. (4.51) to substitute for 80(75’ on the right-hand side gives a consistency condition

a02:1/0(1'7 y) = ]/\4\1/0(1.7 y) + angum(xa y)
0" (90 A ()08 Lo, 9) + O T2 ()% | Au(2), Au(w)] )

+ [A(w), (y)] + 067, (4.56)
Using the maps for Ay and Jz;’\given in Egs. (3.45) and (3.60) we get

[Aute). 7)) = LAa(o). /()] = 0" 5 LAn(2) @uloli) + Frnfo), (1)

+wm%@x&aw%@n)+ow%
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By substituting for the anomaly, & = (1/1672)e,,,,F"* F*?, and using Eq. (4.5), this is

computed as

—~ — i 1
p&@wﬂw]——me%w&ﬂ%Amkﬂwﬂﬁ%X—w

 4q2

- R A - )| 0. (45T

Similarly we get

I i
[Ai($)7 g%(y)] = _ﬁgijkﬁ}kég(x -y)
] 1
+ 4—;20“1” {gmjk {Fijk(S?’(x = ¥) + 508 (A (x - y))}
+ Eijk (Aman-ij(Ss(X — y)) + 0(92). (4.58)

~

Also, in view of the map (3.45), we observe that [A4,(z), A\u(y)] will not have at least any
f-independent part, which means that the term involving this commutator on the right-
hand side of Eq. (4.56) drops out. Using Eqs. (3.45), (4.29), (4.30), (4.33) and (4.57),
the right-hand side of Eq. (4.56) for v = 0 reduces to

T;emngnjkao (AnFi) 83(x — y) + O(62), (4.59)

which is also what the left-hand side of Eq. (4.56) for v = 0 reduces to upon substituting
for the commutator from Eq. (4.29). For p = i, the left-hand side of Eq. (4.56), up
to O(#), vanishes in view of the Eq. (4.31), and the right-hand side, using Eqs. (3.45),
(4.31), (4.32), (4.34) and (4.58), also vanishes. This shows the compatibility of the

noncommutative anomalous commutators with the noncommutative anomaly.

Ambiguities in anomalous commutators and the consistency conditions. As
mentioned in [66,67], the commutators given in the set (4.6)—(4.12) for the ordinary the-
ory have been deduced from the triangle graph alone, which is also responsible for the
current-divergence anomaly. This does not rule out the possibility that higher orders of
perturbation theory may modify the values of these commutators. However, the commu-
tators Spo(x,y) and M;o(z,y) can also be deduced from simpler, exact commutators and
equations of motion, which suggests that their value is exact to all orders of perturbation

theory. On the other hand, the values given in the set (4.6)—(4.12) for the commutators
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Sio(x,y), Soi(z,y) and My,(x,y) cannot be deduced in a way similar to those of Spo(z,y)
and M;o(z,y), and the possibility of the presence of additional terms is not ruled out. It

has been shown [66,67] that if values of these commutators are modified to

i

Siola,y) = — =52k Fly (205" (x = ¥) + 0] (T*5°(x ~ ), (4.60)
Soi(z,y) = 4—7T25iij0j(y)aif53(X —y)— 10 (Tk 53(X - Y)) ) (4.61)
Mim(xa y) Ar 25zmnF0n5 (X - Y) - 1T1m53<x - Y>7 (462)

with T%(y) a pseudotensor operator, then the consistency conditions, Eq. (4.54) for
example, are unchanged. The implications of these modifications will now be analysed

in the present context.

The first point to note is that the various anomalous commutators might get altered
due to the additional T¥-dependent pieces. We explicitly compute these modifications.
Equations (4.14)—(4.23) relate the anomalous commutators in the noncommutative the-
ory with their commutative counterparts. It becomes clear from these equations that
the modifications (4.60)—(4.62) will not alter the values of the commutators §00(x,y),
Loo(z,y), Lio(z,y), Lim(z,y) and ]\Zo(x,y) as given in the set (4.26)—(4.35). The values

of the remaining commutators will be modified as

Sio(z,y) = [right-hand side of Eq. (4.27)] + 10} (T"6*(x — y))
+ 10" Fpp ()0 (T8 (x — )
07 [0 { An(0)2) (T*5°(x ~ ) )
+ 02 { A (2)0) (T (x —y)) }] (4.63)
Soi(x,y) = [right-hand side of Eq. (4.28)] — 8§ (T*8°(x — y))
— 107 P ()05 (T (x — )
107 (08 { A ()0 (T6°(x — y))}
+ 02 { A (2)0F (THP(x —y)) }] (4.64)
Loi(z,y) = [right-hand side of Eq. (4.30)] — 5ef'mmezsi‘(x —y), (4.65)
Moo(x,y) = [right-hand side of Eq. (4.33)] + 26™ A ()2 (T"6*(x — )) , (4.66)

—~

My, (z,y) = [right-hand side of Eq. (4.35)] 4+ (---), (4.67)
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where (- --) appearing on the right-hand side of Eq. (4.67) represents the terms involving

T*(y) whose explicit structure is not needed for our purpose.

Next we show that the conditions (4.52) and (4.56) still hold. The left-hand side of
the condition (4.52) does not involve any of the modified commutators given in the set
(4.63)—(4.67), its value therefore remains unaltered. The right-hand side does involve the
modified commutators, but it is a matter of straightforward algebra to show that there
is no change in its value. The consistency condition (4.56) for v = ¢ does not involve
any of the modified commutators, and therefore it trivially remains valid. As far as the
condition (4.56) with v = 0 is concerned, its left-hand side is 8ozog(x,y) whose value
obviously remains unaffected. The right-hand side involves the modified commutators,

but again after some algebra we find that its value remains unchanged.

4.3 Discussion

One might be tempted to guess the structures of these anomalous commutators as those
obtained by a naive covariant deformation of the ordinary results, just as the covariant di-
vergence anomaly (3.59) is obtained by a covariant deformation of the usual result (3.58).
But a simple inspection rules out this possibility. The point is that the covariant defor-
mation of a gauge-invariant expression can only give a star-gauge-covariant expression.
Since the currents J£ and fg‘ are, respectively, gauge invariant and star-gauge covariant,
so are the divergences 0,Jf and ]5“* jf’f . One could therefore expect that the star-gauge-
covariant anomaly is obtained by a covariant deformation of the usual gauge-invariant
anomaly. Explicit calculations serve to verify this expectation [52,53,65]. On the other
hand, although the commutator [Jy(x), J§(y)], for example, is gauge invariant, yet its non-
commutative counterpart, [jo(:v), jg(y)], is not star-gauge covariant because it involves
two distinct spacetime points, x and y. Therefore it becomes clear that the non-covariant
commutator, [Jo(z), jé’(y)], cannot be obtained by just a standard covariant deformation
of the usual gauge-invariant commutator. Equations (4.39)—(4.48) indeed show that there
is a departure from the naive covariant deformation of the corresponding gauge-invariant

expressions.

The implications of Seiberg—Witten maps were discussed in the previous chapter in
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the context of divergence anomalies. We found that these maps are also useful in obtain-
ing commutator anomalies. Although we analysed the case of the star-gauge-covariant
current, it should be possible to extend this analysis to the star-gauge-invariant current

since corresponding Seiberg—Witten maps are known to exist [51,60].






Chapter 5

Noncommutative gauge theories and

Lorentz symmetry

The issue of Lorentz symmetry in a noncommutative field theory has been debated [69-78]
seriously, but it still remains a challenge leading to fresh insights [24,25]. The problem
stems from the fact that pointwise multiplication of operators is replaced by a star mul-

tiplication:
A(z)B(x) — A(z) x B(z), (5.1)
which was defined in Eq. (1.3):!

A(x) % B(xz) = exp (%9‘158&%) A(x)B(x)

, (5.2)

=z
where 0% is a constant antisymmetric object. Hence the ordinarily vanishing commuta-

tors among spacetime coordinates acquire a nontrivial form:

[z 2¥] — [z, 2¥], = 2 % 2¥ — ¥ * 2t = 10", (5.3)
Since 6* is constant, theories defined on such a noncommutative spacetime are considered
to violate Lorentz invariance.

Nevertheless, in spite of this vexing problem, the basic issues of noncommutative field

theory, like unitarity [79], causality [80], mixing of UV/IR divergences [81], anomalies

!This is the so-called canonical definition. There are other realisations like the Lie-algebra valued

structure or the g-deformed structure—see footnote 1 of Chapter 1.

83
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[51,52,60] are discussed in a formally Lorentz-invariant manner, using the representaion
of Poincaré algebra. To achieve a reconciliation, therefore, it is essential to obtain a
conceptually cleaner understanding of Lorentz symmetry and its interpretaion in the

noncommutative context. Precisely such a study is provided in this chapter.

We adopt a Noether-like approach? to analyse the various spacetime symmetries of
noncommutative electrodynamics. Here we deal with the classical (non-quantised) elec-
tromagnetic field. Although the present study is confined to the U(1) group, it can be
extended to other (nonabelian) groups. Since 6*¥ is a constant, it appears as a back-
ground field in noncommutative electrodynamics. The Noether analysis, which is usually
done for dynamical variables, is reformulated to include background fields. Now there
are two possibilities for a constant 0. It may either be the same constant in all frames
or it may transform as a second-rank tensor, taking different constant values in different
frames. It is found that although the criterion for preserving translational invariance is
the same in both cases, the criterion for Lorentz invariance (invariance under rotations
and boosts) is different. An explicit computation shows that the criterion for Lorentz
symmetry is satisfied only when 0* transforms as a tensor. Translational invariance
is always satisfied. We also show that the transformations are dynamically consistent
since the Noether charges correctly generate the transformations of an arbitrary function
of canonical variables. Also, these charges satisfy the appropriate Lie brackets among

themselves.

As is well known, noncommutative electrodynamics can be studied in two formula-
tions; either in terms of the original noncommutative variables or, alternatively, in terms
of its commutative equivalents obtained by using the Seiberg-Witten maps [3]. Our
analysis has been carried out in both formulations, up to first order in #. A complete
equivalence among the results has also been established. This is rather nontrivial since
there are examples where this equivalence does not hold. For example, the IR prob-
lem found in noncommutative field theory [82,83] is absent in the commutative-variable

approach [84], revealing an inequivalence, at least on a perturbative level.

It is reassuring to note that an important feature [74] of quantum field theory on

4-dimensional noncommutative spacetime, namely, the invariance for a constant non-

2A somewhat similar approach, but with a different viewpoint, was followed in Ref. [71].
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transforming 6 under the SO(1,1) x SO(2) subgroup of Lorentz group is reproduced by
the criteria found here. This has been shown in both the commutative and noncommu-

tative descriptions.

Although the noncommutativity of the spacetime coordinates violates relativistic in-
variance, it has been recently shown by using the (twisted) Hopf algebra that correspond-
ing field theories possess deformed symmetries [23-25]. We shall discuss such deformed

symmetries in Chapter 6.

In section 5.1, the occurrence of noncommutative algebra in various approaches and
their possible connections is briefly reviewed. Section 5.2 deals with the implications
of Lorentz symmetry in a toy model comprising a usual Maxwell field coupled to an
external source, whereas section 5.3 provides a detailed account of Lorentz symmetry in
noncommutative electrodynamics, first in the commutative-variable approach and then

in terms of noncommutative variables.

5.1 A brief review of noncommutative algebra

We start by briefly reviewing Snyder’s algebra [2]. The special theory of relativity may

be based on the invariance of the indefinite quadratic form
5% = (@) — (&) — () — () = (5.4)

for transformation from one inertial frame to another. We shall use (—,+,+,+) sig-
nature for the flat Minkowski metric 7,,. It is usually assumed that the variables x*
take on a continuum of values and that they may take on these values simultaneously.
Snyder considered a different situation. He considered Hermitian operators, x*, for the
spacetime coordinates of a particular Lorentz frame. He further assumed that the spectra
of spacetime coordinate operators x* are invariant under Lorentz transformations. The
later assumption is evidently satisfied by the usual spacetime continuum, however it is
not the only solution. Snyder showed that there exists a Lorentz-invariant spacetime in

which there is a natural unit of length.

To find operators x* possessing Lorentz-invariant spectra, Snyder considered the ho-

mogeneous quadratic form

—()* = (0)® — (1) = (12)* — (y3)* — (1a)* = =t — (va)*, (5.5)
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in which y’s are assumed to be real variables. Now x* are defined by means of the
infinitesimal elements of the group under which the quadratic form (5.5) is invariant.
The x* are taken as

xt =ia (m% — y”aiyzj , (5.6)
in which a is the natural unit of length. These operators are assumed to be Hermitian and
operate on the single-valued functions of y,,, ys. The spectra of x', i = 1,2, 3, are discrete,
but x° has a continuous spectrum extending from —oo to +oo. Transformations which
leave the quadratic form (5.5) and y4 invariant are covariant Lorentz transformations on
the variables yq, y9, y3 and yp, and these transformations induce contravariant Lorentz

transformations in x¥*.

Now six additional operators are defined as

v 123

which are the infinitesimal elements of the four-dimensional Lorentz group. The ten

operators defined in Egs. (5.6) and (5.7) have the following commutation relations:

X x'] = ia®MH*, (5.8)
[M‘“’, X)\] =i (x“n”)‘ — x”'r]“’\) , (5.9)
[M# MP] = 1 (M7 — MEeyP 4 MPep? — M7Ppee) (5.10)

The Lorentz SO(3,1) symmetry given in Eq. (5.10) is extended to SO(4,1) symmetry
specified by Egs. (5.8)—(5.10).

Since the position operators x* have discrete spectra, we can understand it in terms
of a nonzero minimal uncertainty in positions. It is possible to obtain the space part of

Snyder algebra by considering the generalised Heisenberg algebra® (with /i = 1):

[xi, pj] = 16i+/1 + aprpx, (5.11)

which implies nonzero minimal uncertainties in position coordinates, and preserves the

rotational symmetry. Representing the generalised Heisenberg algebra on momentum

3The space part of Snyder algebra can also be obtained from another generalised Heisenberg algebra

considered in [85].
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wave functions 1 (p) = (p|v),

pi(p) = piv(p), (5.12)
xp(p) = 1V 1+ a?prpr0y, b (p), (5.13)

we get the commutation relation among the position operators:
[Xi,Xj] = —CL2 (piapj - pjﬁpi) = iCL2Mij, (514)
where we have defined

Mij =1 (iGp; — PiOp.) - (5.15)
Thus we have

[Mij, %] =1 (idj6 — x;0ir) , (5.16)
[Mij, M| =1 (M — Midji + Mjrdy — Myidi) - (5.17)

The algebra (5.14), (5.16) and (5.17) exactly reproduces the space part of the Snyder
algebra (5.8)—(5.10).

Doplicher, Fredenhagen and Roberts [4,86] proposed a new algebra (DFR algebra) of a
noncommutative spacetime through considerations on the spacetime uncertainty relations
derived from quantum mechanics and general relativity. This algebra defines a Lorentz-
invariant noncommutative spacetime different from Snyder’s quantised spacetime. Their

algebra is given by

(X, x"] = i0", (5.18)
[0, x| =0, (5.19)
[0",6°°] = 0. (5.20)

Recently, Carlson et al. [72] rederived this DFR algebra by ‘contraction’ of Snyder’s
algebra. For that they considered

1
W = Lo (5.21)

and the limits b — 0, a — 0 with the ratio of a* and b held fixed: (a?/b) — 1. The result
of this contraction is the algebra given by Eqs. (5.18)—(5.20). It also follows that

[M#2,g9%] = i (5o 4 oyl — grag? — guoppe) (5.22)
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Since a — 0 is a part of the limit, the contracted algebra corresponds to a continuum

limit of Snyder’s quantised spacetime.?

Here we shall consider noncommutative electrodynamics which is obtained by a stan-
dard deformation of the usual (commutative) Maxwell theory, replacing pointwise mul-
tiplication by a star multiplication defined by Eq. (5.2). We shall show in what precise
sense Lorentz symmetry is interpreted to be valid, or otherwise. To facilitate our analysis

we first develop the formulation in the context of a simple toy model.

5.2 A toy model

We know from Noether’s theorem that the invariance of action under a symmetry group,
and a spacetime transformation in particular, implies the existence of a current J* satis-
fying a continuity equation d,J* = 0. We shall now investigate what happens when the
action contains vector or tensor parameters which are not included in the configuration
space, i.e., there are external vector or tensor parameters in the theory. Before we con-
sider the noncommutative Maxwell theory, which contains a tensor parameter %, it will

be advantageous to first start with a simpler case.

We consider ordinary Maxwell theory with the potential coupled to an external source:

1
S = / d'z & = — / d'x (ZFWFW - j“AH) : (5.23)

Here j, is taken to be a constant vector, i.e., it is constant but transforms as a vector when

4The validity of this contraction process is questionable. Let us recall the familiar contractions of the
group SO(3) to the group Es, and of the Poincaré group to the Galilean group. In the limit of infinite
radius, SO(3), which is the symmetry group of the surface of the sphere, contracts to Es, the symmetry
group of a plane. Likewise, in the low-velocity limit, the Poincaré group contracts to the Galilean group.
These contractions involve taking limit of one parameter only whereas the above mentioned contraction
of Snyder algebra to DFR algebra is achieved by taking limits of two parameters, a — 0 and b — 0.
Furthermore, in the standard group contraction we can identify a mapping among the generators of the
two groups, but in the mapping (5.21), 6*” is not a generator associated with any symmetry group.
In this context, therefore, we agree with Kase et al. [73] that there is no connection between the two

algebras.
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we go from one coordinate frame to another.> Here we would like to mention that for the
realistic current sources, j*# corresponds to a vector function which is localised in space.
In this sense, therefore, j7# should be treated as a hypothetical source as it has been taken
to be constant throughout. We are just interested in studying the Lorentz-transformation

property of this system.

Let us consider an infinitesimal transformation of the coordinate system:
t — o™ = gt 4 ozt (5.24)
under which A* and j* transform as

At(z) — AM(2') = A*(x) + 0 AF(x), (5.25)
gt — ="+ 0t (5.26)

The change in the action resulting from these transformations is

55 = [ dla’ 2 (A (), LA ('): 1) — / Ao (A(@), 0,4 (x): ), (5.27)
Q Q

where Q is an arbitrarily large closed region of spacetime and €2 being the transform of

2 under the coordinate change (5.24). The above change in action can be rewritten as
35 = [ [ (4(0). 0,400 0) ~ £ (A(0). 0,Au(0)30)
Q
s [ g (). 0,40 )5 (5.28)
Q-0

The last term, an integral over the infinitesimal volume €' — €, can be written as an

integral over the boundary 90€2:
/ d'z L (A,0,AL;5) = / dSy 622 L (A, 0,A,; 5,
-Q o9
_ / Az 0y [62° L (A, 0,40 5,)] | (5.29)
Q
where Gauss theorem has been used in the last step. For any function f(x), we can write

of = f'(a') = f(x) = bof + 620, f, (5.30)

SLater we shall also consider the case where j# does not transform like a vector but is fixed for all

frames. In that case, one expects that the Lorentz invariance of the action will not be preserved.
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where 0o f = f'(z) — f(x) is the functional change. Since we have taken j* to be constant,

dog" = 07*. Now we have

L (A, (x), 0,4, (); 5,) — £ (Au(x), 0, AL (2); i)

0L 0z 6’.;%
= —0pA LAy 31
Using the equation of motion
0L 0L
= 9 | ——— ) = 5.32
oA, <a(a#,4y>> % (5.32)

and the relations (5.29) and (5.31), we can cast Eq. (5.28) as

0L 0L
4 ,u .
0S8 = /d { (.;S,”éx ( )60A ) _j,, 5],,} .

In view of Eq. (5.30), we can write®

0L 0L
§S = [d* 0A, — T ox, g, :
5= fo o (o o)+ 5o 53
where T is the canonical energy—momentum tensor defined by
0L
™ = YA, — L. .34
oA )8 - (5.34)

For spacetime translations, dz* = a*, a constant, while 04, = 0 and 65, = 0. So the

invariance of the action under translations implies
/d4x (0,T")a, = 0.
Since it is true for arbitrary a,, we must have
0,T" = 0. (5.35)

This is the criterion for translational invariance of the action.

In the case of infinitesimal Lorentz transformations (rotations and boosts), dz, =
W, 0A, = w,AY and 0j, = wuj¥, where w,, is constant and antisymmetric. So the
invariance of the action implies

0L 0L 0L 0L
d! {a( AP — AN — TP 4 THP A>+—,’P 0wy =
/ o 8(3“14)\) a(aﬂAP) ! ! J J e

6Now onwards we drop the explicit display of ) as we take this to correspond to entire spacetime in

a suitable limit.
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Since it is true for arbitrary wy,, we must have

0L 0%
8M‘“”+—."’——.'A=0, 5.36
I 6])\ ajp ( )
where
v = 9L jo o 0L n g + THPg?, (5.37)

a(auAA> a(auAp)

Therefore, the criterion for Lorentz invariance of the action is
O MH — ANjP + AP = 0, (5.38)

Now we shall obtain the criteria for translational invariance and Lorentz invariance
of the action when j# is not a genuine vector but has the same constant value in all
frames. In that case we have §7# = 0 not only under translations but also under Lorentz
transformations. Therefore the last term inside the parentheses on the right-hand side of

Eq. (5.33) drops out and the criteria for the invariance of the action turn out to be

9,T" =0, (5.39)
0, MM = 0. (5.40)

Thus, the criterion for translational invariance is the same irrespective of whether j#* is
a genuine vector or not. However, this is not the case with the criterion for Lorentz

invariance.

Now we shall explicitly evaluate 9, 7" and 9, M"** for our toy model (5.23). This

will obviously be independent of whether j# transforms like a vector or not. Using

7 0L
oL = 8—Apa A, + ma 0. A,,

the equation of motion (5.32), and the definition (5.34) of energy-momentum tensor, we

find
0,T" = 0. (5.41)

Also, using the equation of motion (5.32), Eq. (5.41) and the defintion (5.37) of M#,
we find for our theory (5.23) that

O MM = ANjP — AP, (5.42)
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As mentioned earlier, the results (5.41) and (5.42) do not depend whether j#* transforms

like a vector or not.

We have seen that the criterion for translational invariance is the same, 0,7"" = 0,
in both the cases, independent of whether j# transforms like a vector or not. This is
satisfied in view of Eq. (5.41), thereby indicating that our toy model has translational
invariance in both the cases. However, the criterion for Lorentz invariance is different
in the two cases—see Eqgs. (5.38) and (5.40)—whereas what we have actually found is
given by Eq. (5.42). Since this agrees with the criterion (5.38), our model has Lorentz

invariance only when j* transforms like a vector, and not in the other case.

We shall now show that using the Noether charges
Pt = / daT®, T = / 4’z MO, (5.43)

and the canonical equal-time Poisson brackets {A,(t,x), 7"(t,y)} = 0/,0°(x —y), we can

generate the transformations of the dynamical variables A; and 7'

{A;, Qv} = Ly A, {7, Qv} = Lyn’, (5.44)

where Qg, = P, Qz[uay] = J,, and Ly A; stands for the Lie derivative” of the field A,
with respect to the vector field V' associated with the charge Qv .

The canonical momenta of the theory are

0L
O = -
T = A Bon) 0, (5.45)
2 2
Tt = A =F". (5.46)

I Wl (x) — WSF(a) for an arbitrary tensor field under the infinitesimal transformation 2# —
a'* = gt — bV#, then the Lie derivative of W (z) with respect to the vector field V(z) = V#(z)0,, is
defined as
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It follows from the definitions (5.34) and (5.37) that

) 1 . 1 .
TOO — WzaiAO — 571'27'(7; - ZEjF” - jMAN, (547)
T = 779" A;, (5.48)
MO — 700 i A0 4 0rigi A (5.49)
M% = 7t AT — I gkl Ay, — T AT+ 2RO A, (5.50)

where we have used Eq. (5.46) to eliminate velocities in favour of momenta. Now we

compute the Poisson brackets of the field A; with the charges:
{4, P} = 0;A;,
{Ai, Py} = 0; Ao + m; = O A,
{A;, Ju} = ninAi — 10k A; — nu Ay + 201 A;,
{Ai, Ju} = =21 (0; A0 + ™) — nuAo + 001 A; = —2100A; — nuAo + 200, A;,

where the definition (5.46) of momenta has been used in the second steps of Egs. (5.52)
and (5.54). Since

Lo, Ai = 0, A, (5.55)
Lo0,4i = NinAy — 2,0, A; — i Ay + 1,0, 44, (5.56)

it follows that
{Ai, P} = Lo, A {Ai, Juwt = Lay,0,)Ai- (5.57)

The brackets of the momenta 7; with the charges are

{mi, P} = 0ym;, (5.58)
{m;, Py} = O F"; — jis = Qomi, (5.59)
{mis T} = niem — 110k — Nk + TR0, (5.60)
{mi, Ju} = —xy (3kai — ji) + xoOym; — Fiy = —200m; + 200y — F, (5.61)

where, in the second steps of Egs. (5.59) and (5.61), we have used 9y’ = O F* — j
which is a consequence of the equation of motion (5.32):
AL (5.62)
=  OFY + O F" — i = —0yrt + O F* — j = 0.
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Since®
Lo, mi = O, (5.63)
LooyTi = Mk — ©10kT; — Numy + TR0, (5.64)
L (208, —2,00)Ti = —01007; + 20Oym; — F (5.65)

it follows that
{mi, P} = Lo, m;, {mis S} = Lay,0,,Ti- (5.66)
Hence we have shown that Eq. (5.44) is indeed satisfied.
We also find that

{P, P} =0, (5.67)
{55, Ju} = niPr — 1Py, (5.68)
{Jijs T} = njeda + nadix — niJi — njidie. (5.69)

Now it follows that restricting to kinematical generators (P; and J;;) only, we have

{Qu, Qv = Quwv (5.70)

Thus we see that, although 0y J* # 0 (in view of Eq. (5.42) and the definition of J*
in (5.43)), we still have Eqgs. (5.44) and (5.70). This is necessary for establishing the

dynamical consistency of the transformations.

It should be stressed that the Hamiltonian approach violates manifest Lorentz invari-
ance. The fact that it gets restored is thus quite nontrivial. A possible way to see the
manifest violation is through Eq. (5.45). Within the Hamiltonian formulation, however,
this equation really is a primary constraint and the equality is only ‘weakly’ valid [87].
Time-conserving the primary constraint leads to a secondary (Gauss) constraint. This is
basically the zero-component of the equation of motion (5.62), expressed in phase-space

variables:
o' — 0~ 0. (5.71)

There are no further constraints. These constraints do not affect the realisation of the

three-dimensional Euclidean symmetry (5.67)—(5.69).

81t is perhaps worthwhile to mention that while computing the Lie derivative of 7, one should keep in

mind that 7! are not the components of a 4-vector. Rather, 7% are the components of a tensor, 7! = F°.
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5.3 Noncommutative electrodynamics

5.3.1 Commutative-variable approach

We now generalise the case of vector source considered in the previous section to anti-

symmetric tensor ‘source’ . We take the noncommutative Maxwell theory:

-1 [ate (B ). (5.72)

On applying the Seiberg—Witten maps,

W)
I

A, = A, — -ea Ag (034, + Fz,) + O(6?), (5.73)

Foy = Fu— 09 (Au05F,, + FuuFg,) + 0(6%), (5.74)
we get the effective theory in terms of usual (commutative) variables:
4 1 v af 1 1 v 2
S=—[dz Z—lFWF“ +0 2F F5+ SFMFW Fr | +0(0%), (5.75)

where a boundary term has been dropped in order to express it solely in terms of the field
strength. Although we have kept only linear terms in 6, our conclusions are expected to
hold for the full theory. The Euler-Lagrange equation of motion for this theory (in view
of the fact that £ does not have explicit dependence on A,,) is

9, (%) — 0. (5.76)

Popular noncommutative spacetime is characterised by a constant and fixed (same
value in all frames) noncommutativity parameter but here first we take %% to be a con-
stant tensor parameter, i.e., it is constant but transforms as a tensor under Poincaré
transfomations. Proceeding as in the previous section, we find that for spacetime trans-

lations, invariance of the action implies, as before,
0, T" =0, (5.77)

with 7" defined as in (5.34), i.e

T = a(g{x )a”A L. (5.78)
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In case of infinitesimal Lorentz transformations, éz, = w,z”, 04, = w, A" and
60, = wuab®, — wyad®,. With M** defined as in (5.37),

0% 0%
MHEA — AP — AN — THA P 4 HP A _
00,4 oA A 1)

the analogue of Eq. (5.36) turns out to be

0, MM + 2%9% _ 997
90,0,

67, =0, 5.80
aea)\ ( )

which, upon substituting
0 1

|
_ L (propwe lpmpm) g,
6., 2( i ) Z

gives us the criterion for Lorentz invariance of the action as
1 1
O MM — 02 F, (F’“"F”” + Z—LF“”F”O‘) +0°0F (FWF”A + ZFWFM) =0. (5.81)

In the case when 0" does not transform like a tensor but is fixed in all frames, we
have 66, = 0 under translations and Lorentz transformations. In that case, the criteria

for the invariance of the action turn out to be

9,T" =0, (5.82)
0, M =0, (5.83)
which are the exact analogues of the criteria (5.39) and (5.40).

Now we shall explicitly evaluate 9,7** and 9,M*"* for our model (5.75). We have

0.2
9(9,4,)

1 1
= FP7 0% P F o~ " Fyo— 0" F* Fy 6% (FpaF” 5+ 5FgaFW) .

(5.84)
Taking the derivative of Eq. (5.78) and using the equation of motion (5.76), yields
0,T" =0, (5.85)

Similarly, taking the derivative of Eq. (5.79), using Eqs. (5.76) and (5.85), and finally
substituting (5.84), we find

1 1
0, M"™ = 0 F,, (FWFVP + Zme> — 0o F (FWF”A - ZFWF”) . (5.86)
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The results (5.85) and (5.86) do not depend on whether 0* transforms like a tensor or

not.

We have seen that the criterion for translational invariance is the same, 9, 7" = 0, in
both the cases when 0# transforms like a tensor and when it does not. This is satisfied
in view of Eq. (5.85). However, the criterion for Lorentz invariance is different in the
two cases—see Eqgs. (5.81) and (5.83)—and what we have actually found is given by
Eq. (5.86). Therefore, as expected, our theory has Lorentz invariance only when 6"
transforms like a tensor, and not in the other case. The Seiberg-Witten maps (5.73) and
(5.74) have an explicit Lorentz-invariant form provided that € transforms like a Lorentz

tensor, in accordance with the result found here.

As in the toy model, we now show that the Poisson bracket of the dynamical fields
A; and 7* with the charge is equal to the Lie derivative of the field with respect to the
vector field associated with the charge. As usual, the Hamiltonian formulation [88] is

commenced by computing the canonical momenta of the theory:

=0, (5.87)
Tt = F'LO —gmn <F2nF0m + §anFOz) _ e'kanFOk _ eOn (FOIFOn + szan)

(1 1
+ 907, <1anan o 5‘FWOWL_Fme) )

(5.88)

As before, Eq. (5.87) is interpreted as a primary constraint. Since the definition (5.88)
of momenta 7 contains terms quadratic in ‘velocities’, it is highly nontrivial to invert
this relation to express velocities in terms of phase-space variables. Therefore, we now
implement the condition? 8% = 0, which enables us to write down the velocities in terms

of phase-space variables:

. ) ) 1 . )
FO = 7t — gmn (anwm + 5anw) — 0" o Th. (5.89)

9The simplifications achieved by this condition are well known in the Hamiltonian formulation of
noncommutative gauge theories. It eliminates the higher-order time-derivatives so that the standard

Hamiltonian prescription can be adopted.
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It follows from the definitions of T+ (5.78) and M** (5.79) that
1 1

T = 79, A° — §7ri7n 1 W FY
ij (1 g, L bm L k K
-0 §szFm]F -+ é lekmF — ZF}iﬂkW — ijﬂ'iﬂ' R (590)
TV = WjaiAj, (5.91)
MO — 00y i A0 o Origi 4 (5.92)
MO = 7 AT — Ik Ay — I AL+ iR Ay, (5.93)

where we have used Eq. (5.89) to eliminate velocities in favour of momenta. Time-
conserving the primary constraint with the Hamiltonian [ d*z T, yields the Gauss con-

straint
o' ~ 0. (5.94)

There are no further constraints.

Now we find

{Ai, P} = 0;A;, (5.95)
1

{Ai, P} = 0iAo + 1 — 6" Frpe™ — 0™ (Finﬂ—m + §an7Tz‘) ; (5.96)

{4, Ju} = nadi — O Airy — ma Ay, + 0 Asy, (5.97)

1
{4, Jor} = —xp, |0;A0 + 7 — 0, Frppy™ — ™ (Enﬂ-m + §anﬂ-z):| + O Ajxg

— NixAo-
(5.98)
As in the toy model, here also we obtain
{4, Qv = Ly A, {r",Qv} = Ly~ (5.99)

We find that algebra (5.67)-(5.69) is satisfied here also, which in turn implies that the
condition (5.70) holds, i.e., restricting to P; and J;;, we have

{Qu.Qv} = Quy. (5.100)

Finally, we would like to mention that there are certain choices of constant nontrans-

forming 6 for which the Lorentz invariance can be partially restored. Let us get back
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to Eq. (5.3) which characterises the noncommutativity. Under Lorentz transformation,

dzt = why2?, this equation imposes the following restriction on nontransforming 6:
QU = WO — w” M = 0. (5.101)

There is no nontrivial solution of this set of equations. However, some subsets of this set

of equations are soluble. It can be easily seen that the equation
QOl = </()02621 4 w03631 . w12820 . w13930 =0

is satisfied for 02 = 9% = 02 = #3 = 0. This choice of 8 also solves Q2 = 0. Thus,
invariance under a rotation in 23-plane and under a boost in 1-direction can be restored

(for nontransforming #) by choosing

0 6 0 0
—6, 0 0 0
{0} = (5.102)
0 O
0 0 —6, 0

Likewise it can be seen that the invariance under a rotation in 13-plane and under a boost
in 2-direction is restored for 8% = % = 2 = 23 = 0, whereas for ! = 9°2 = 93 =
6?3 = 0, the invariance under a rotation in 12-plane and under a boost in 3-direction is
restored. The spacetime symmetry group for these choices of 8 is [SO(1, 1) x SO(2)] x Ty,

where X represents semi-direct product.

We now show that these results also follow from our analysis. We have shown that the
criterion for Lorentz invariance when 6 does not transform is 9,M** = 0, Eq. (5.83). For
the choice (5.102) of 6, Eq. (5.86) indeed gives 8, M*?* = 0 and 9, M**' = 0. Similarly, our
analysis gives consistent results for the other choices of 8. It is worthwhile to mention that
the choice (5.102) has recently been studied [74,77] and CPT theorem in noncommutative
field theories has been proved [74].

Noncommutative gauge theories in two dimensions are always Lorentz invariant, since,
in two dimensions, the noncommutativity parameter becomes proportional to the anti-
symmetric tensor £*”, which has the same value in all frames. Our analysis is also

consistent with this fact; in two dimensions, Eq. (5.86) gives ,M*"°" = 0.
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5.3.2 Noncommutative-variable approach

Here we shall reconsider the analysis just presented, but in noncommutative variables.
However, as earlier, we again restrict ourselves to the first order in #. In this approxima-

tion, the original theory (5.72) reads

S

1 . . ~ U
-3 / dix [GNA,, (amv - 8”A“> + 2009, 40,49, 4, | . (5.103)

The change of 2{“ under Poincaré transformation is dictated by the noncommutativity
parameter 6" through the Seiberg—Witten map (5.73); A\u will transform differently
depending on whether 0*” transforms like a tensor or not. For spacetime translations,
however, it does not matter; 64, = 0 and 46" = 0 imply 52u = 0. Under Lorentz
transformation, 04, = w, A”, 0Fp, = Wﬁ/\F/\u - wu,\F’\ﬁ, and 00, = w0, — Wyl
if 0, transforms as a tensor, otherwise 66, = 0 if it does not transform. Therefore, for

transforming 6, map (5.73) gives
SA, = wn A, (5.104)

which is the expected noncommutative deformation of the standard transformation for a

covariant vector. For nontransforming 6,
. 1 e PN
64, = win A = 507w, 29,4, — 2,0,4* —2 (AkaaAu - Aaa*Auﬂ . (5.105)

Proceeding as in the case of toy model, we find that the change in action under

spacetime transformations is given by

55 = / d*z |9, L’%aﬁy—fﬂ"axy L 92 s , (5.106)
9(0, 4, oo

where the canonical energy—momentum tensor is defined as

—~

. X% . _
pw = 9L g7 _ . (5.107)

0(0,A,)

Therefore, the criterion for translational invariance of the action, irrespective of

whether 6 is a tensor or not, is

8,T" = 0, (5.108)
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since dA, = 06" = 0. It follows from the definition (5.107) that the criterion (5.108) is
indeed satisfied once we use the equation of motion (Lagrangian density does not have

explicit dependence on A\H)

8, (Lﬁ{) = 0. (5.109)
8(9,A,)

This implies that the action (5.103) is invariant under translations.

In the case of transforming 6, the criterion of Lorentz invariance, using the transfor-

mation (5.104), turns out to be
M — (9,4, 9,4,) (00 AP A — 07,07 A" A =, (5.110)
where
0.4 -~ 0L

MP» = AP — AN = THAgP o THeN (5.111)
(()(a“A)\) 8(auAp)

On the other hand, using the transformation (5.105) for nontransforming 6, the invariance

of the action under Lorentz transformations demands
A THA 1 A n n e Av v A 0 o Av v Ao
O — 207, (0.4, - 0,4,) 0 | Ao 200 & — 0 ) — A0 (20° A — 0 A°)

%9%’@ (aﬂﬁy . ayﬁﬂ) o [2@(20@” AN - A (2@6@ - aﬁaﬂ — 0. (5.112)

Next we compute (9“]\7 #2 from the definition (5.111). Using the equation of motion

(5.109) and

o~

9L _pAe— 000, AF Oz AN — 0109, A (a&@u - a,,@) : (5.113)
8(9,A,)

it follows from (5.111) that
00 = (0,4, - 0,4, ) (000" Aor A — 07,0 A A (5.114)

which shows that the criterion (5.110) is satisfied and not (5.112). Thus, the action
(5.103) is invariant under Lorentz transformations only when 6 transforms as a tensor,
which is like the case of noncommutative electrodynamics in usual variables, considered

in the previous section.
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We shall now establish a connection between the two descriptions of noncommutative
electrodynamics considered here and in the previous section. The Lagrangian densities
in the two formulations are related by the map

[ ieaﬁaﬁ (AuFo ™). (5.115)
Since .Z and . differ by a total-derivative term, we have S=8.

Now we shall find the maps between T"” and T as well as between M# and M.
First we apply the Seiberg-Witten map (5.73) on the right-hand side of Eq. (5.113) and
take into account Eq. (5.84) to get

8‘5{ __oZ +9a“FA”80Aa+8aAF”“Fm—Qaﬂc‘)ﬂ(AaFA“)JrEQA”FHUF’“’. (5.116)

8(9,A,)  0(0.45) 4
Using the maps (5.73), (5.115) and (5.116), we get a map'® between 7# (5.107) and T*
(5.78):

~

1
Tu — w4 gon (F%’(,AaamA + Zzapzwama)

1 1
+ 6P EFA“@AACY@”Aﬁ — O (A FM) 0¥ Ay — 11" % (AaFoF™)

1
— 5Aazwa" (054 + Fm)] : (5.117)
Similarly, using the maps (5.73), (5.116) and (5.117), we get a map between M (5.111)
and M* (5.79):
T A A
MM = N M(i;)ﬂ _ M(l;f)’ ’ (5.118)
where

1
MUpP = P F1 F, AP + (O A F

1
+ o [FMAﬂaUAa — z° (Fwa(,AaaAAﬁ + ZF,wszwamaﬂ
1
— 0P {Aﬂaﬁ (Ao ) + §F’\“Aa (05 AP + Fs")
1 1
+ 2’ (éF"“@UAaﬁAAg — M A, 05 (AL FH) — Znu*aﬁ (AgFrop F"7)

1
— 5AQF(’”&)A (05As + Fﬁo))} : (5.119)

10A similar map among the symmetric energy-momentum tensors is defined in [46], the energy—

momentum tensors considered here follow from Noether’s prescription.
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It follows from Eq. (5.117) that
8, T" = 8,T" (5.120)

where we have used the equation of motion, 0,F" + O(#) = 0. This shows the com-

patibility of the criteria for translational invariance in the two descriptions, Eqgs. (5.77),

(5.82) and (5.108).

Next we show the compatibility of the criteria for Lorentz invariance. It follows from

Eq. (5.118) that

— 1
MM = 9, M" + g <F"“FM8MA” — F0, A0 A, + ZFMF“U%)

1
— 6 (F””FgaéuA* — F"0,A,0M A, + ZJf,wF*“’Wa> : (5.121)

where again the equation of motion, 9,F* + O(#) = 0, has been used. Now we use the
maps (5.73) and (5.121) on the left-hand side of Eq. (5.110) to obtain
0, M — (auﬁy - ayﬁu) (maaaﬁ#aﬂiﬁ - epaaaﬁﬂaﬁ”)
1 1
= 0uM" — 07 F, (FWF”P + ZFWFW) + 07 F,, (FWF” + 1W”FM) - (5.122)
Thus, the left-hand side of criterion (5.110) goes over to the left-hand side of criterion
(5.81) under the Seiberg—Witten maps, which shows the compatibility of the two criteria
for Lorentz invariance when 6 transforms as a tensor. Turning to the case when 6 does

not transform, we now apply the maps (5.73) and (5.121) on the left-hand side of the
criterion (5.112):

0, MM — %eka (0,4, - 0,4, ) o [A* (2072 — 07 v ) — Ar (207 A" — 040
+ %ef’a (auﬁy . a,,/m o" [Ea (25%21” - a%@) — A (20021” - aufxa)]
= O MM + ieka (0% (APF(o F™7) — 0 (A*F e F*7)
- }lepa (0% (A F(p F™7) — 0 (AYF (e F)] . (5.123)
Thus, the left-hand side of criterion (5.112) goes over to the left-hand side of criterion
(5.83) up to total-derivative terms. The origin of these total-derivative terms is presum-

ably due to the fact that Z and & are not exactly equal but differ by a total-derivative
term, Eq. (5.115).
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We shall now show that using the Noether charges
pr— / B T, T = / B MO, (5.124)

and the canonical equal-time Poisson brackets {Eﬂ(t, x), " (t,y)} = 040°(x —y), we can

generate the transformations of the dynamical variables 121\2 and T;:
{A.Qv} =Lva,  {7.Qv} =07 (5.125)
The canonical momenta of the theory are
70 = Ui, A, (aofv' - aﬂ'ﬁo) , (5.126)
7 =0 A — 0P A" — 0, A9, A"
— g (aofanlZv — 29, AT + 9 A0 A° + § AR A, — akfvalﬁk) . (5.127)

As in the previous section, here also we set #% = 0, so that the above definitions simplify

to
7 =0, (5.128)
7= A — 9O A" — "9, A°), A", (5.129)

It follows from the definitions (5.107), (5.111) and (5.129) that

~ PN 1. 1 ~ o~ o~
T = #9A4° — J7'%: — S04, (04 - ' )

— 9" 7,0, A9, A1 + akﬁial?v'aijj} , (5.130)
T = 799 A;, (5.131)
MW = T _ 740 4 0715 A, (5.132)
MY =7 A — 7RG Ay, — 7 A+ 27 A, (5.133)
After some algebra, we find that
{fli, ﬁu} = Lo, A, {/Ali, fu} — L, 0, A (5.134)
and likewise for 7;, which proves Eq. (5.125). We also find that
{P.B} =0, (5.135)
{Ai, /;cl} = Uikf’z - Th'zﬁk, (5.136)
{jij, jkz} = njkj\il + mlj;k - nikt/];'l - njlj;ka (5.137)
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from where it follows that

{@U, Q\V} = @[U,V}a (5.138)

where we have restricted to kinematical generators (132 and jw) only. Thus we see that,
although 9y J" # 0, we still have Egs. (5.125) and (5.138). This is necessary for estab-

lishing the dynamical consistency of the transformations.

Finally, we would like to mention that for the choice (5.102) of 6, Eq. (5.114) gives
8,M"23 = 0 and 9,M"* = 0. The criterion (5.112) for Lorentz invariance when 6 does
not transform is not compatible with Eq. (5.114) in general. However, for this particular
choice of 6 the criterion (5.112) also gives (‘LJ\/Z #23 = () and 8#\7 #1 = (. Thus, Lorentz

invariance is partially restored.

5.4 Discussion

The present analysis fits in with the general notions of observer versus particle Lorentz
transformations. As is known, usually (without a background) these two approaches to
Lorentz symmetry agree. In the presence of a background, this equivalence fails since
the background (here §,,,) transforms as a tensor under observer Lorentz transformations
but as a set of scalars under particle Lorentz transformations. The effect of observer
and particle Lorentz transformations was captured here by the distinct set of criteria—
Egs. (5.81) and (5.83) in the commutative description and Egs. (5.110) and (5.112) in
the noncommutative description—obtained for a transforming or a nontransforming 6.
Lorentz symmetry was preserved only for a transforming 6 which conforms to observer

Lorentz transformations.

The analysis of Lorentz symmetry in the presence of the background field 6 seems to
parallel the discussion of gauge symmetry'! in the presence of a background magnetic

field B.'2 In the present treatment, Lorentz symmetry of the action is preserved although

HFor a detailed study of the connection between Lorentz and gauge symmetries in the Maxwell theory,

see [89].

2Indeed 6 can be regarded as the inverse of B.
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there may not be a conserved generator.!® Likewise, gauge symmetry of the action, say
for a particle moving in the presence of background magnetic field, is preserved although
a generator, like the Gauss operator, does not exist, since there is no dynamical piece for

the gauge field.

Finally, we mention that the present analysis refers to the standard realisation of
Poincaré symmetry over trivial co-commutative Hopf algebra of fields. Recently it has
been shown [24,25] that for constant 6, an explicit twisted Poincaré symmetry is realised

within the twisted Hopf algebra of fields. This is discussed in the next chapter.

13The generators, however, are dynamically consistent as shown, for instance, in Egs. (5.99), (5.100),

(5.125) and (5.138).



Chapter 6

Deformed symmetries on

noncommutative spaces

The introduction of noncommuting relativistic coordinate spacetime,
", 2" = i0", p,v=0,1,

for constant 0* implies, among other things, a breakdown of Lorentz invariance. How-
ever, it has been shown by using the (twisted) Hopf algebra [24] that corresponding
field theories possess deformed Lorentz invariance. This suggests above all to use the
representation theory of the deformed Poincaré algebra as a basis for systematic field
theoretic discussions of these theories. In the related developments, Wess [23] and collab-
orators [90-92] have discussed the deformation of various symmetries on noncommutative
spaces. A deformation of the algebra of diffeomorphisms is constructed for noncommu-
tative spaces with a constant # parameter. The deformation of the Poincaré algebra
naturally follows as a subgroup of the deformed diffeomorphism algebra. It has been
shown that the algebraic relations remain unaffected but the coproduct rule changes.
The modified coproduct rule obtained for the Poincaré generators is found to agree with
an alternative (quantum-group-theoretic) derivation [24,25,93] based on the application
of twist functions [94]. The extension of these ideas to field theory and possible impli-
cations for Noether symmetry are discussed in [18,95,96]. An attempt to extend such
notions to supersymmetry has been done in Refs. [97-100]. Very recently, the deformed
Poincaré generators for Lie-algebraic 6 (rather than a constant #) [101] and Snyder [2]

107
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noncommutativity [102] have also been analysed.

There are principally two approaches for discussing the deformed symmetries and
these give equivalent results. In the first method [23,90-92] higher-order differential
operators are constructed which are compatible with the star-product for a constant
(canonical) noncommutative parameter. The deformations brought about by the presence
of these operators are such that the comultiplication rules are modified but the algebra
remains undeformed. In the second method [24,25] the modified comultiplication rules

are obtained by an application of an abelian twist function on the primitive coproducts.

In this chapter we develop an algebraic method for analysing the deformed relativistic
and nonrelativistic symmetries in noncommutative spaces with a constant noncommuta-
tivity parameter. By requiring the twin conditions of consistency with the noncommuta-
tive space and closure of the Lie algebra, we obtain deformed generators with arbitrary
free parameters. For relativistic conformal-Poincaré symmetries a specific choice of these
parameters yields the undeformed algebra, although the generators are still deformed.
For the nonrelativistic (Schrodinger [103-105]) case two possibilities are discussed for
introducing the free parameters. In one of these there is no choice of the parameters that

yields the undeformed algebra while in the other way, this possibility exists.

A differential-operator realisation of the deformed generators is given in the coordi-
nate and momentum representations. The various expressions naturally contain the free
parameters. For the particular choice of these parameters that yields the undeformed
algebra, the deformations in the generators drop out completely in the momentum rep-

resentation.

The modified comultiplication rules (in the coordinate representation) and the asso-
ciated Hopf algebra are calculated. For the choice of parameters that leads to the un-
deformed algebra we show that these rules agree with those obtained by an application
of the abelian twist function on the primitive comultiplication rule.! For other choices
of the free parameters the deformations cannot be represented by twist functions. The

possibility that there can be such deformations also arises in the context of k-deformed

IFor the conformal-Poincaré case this computation of modified coproduct rules using the twist function
already exists in the literature [24,25,93,94], but a similar analysis for the nonrelativistic symmetries is

new and presented here.
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symmetries [106].

Coordinate transformations mapping the undeformed generators with the deformed
ones have been given, once again for the particular choice of parameters when the algebra
remains undeformed. Consequently such transformations are meaningful only when the
deformations are expressed through twist functions. Also, these transformations are valid

both for the relativistic and nonrelativistic treatments.

In section 6.1 we discuss the deformed conformal-Poincaré symmetries. The special
conformal generator contains an arbitrary free parameter. New algebraic structures are
obtained. Section 6.2 has a detailed analysis of the Schrodinger symmetry [103—-105]
(Schrédinger group contains, in addition to the centrally extended Galilean group, two
conformal generators, namely dilatations and special conformal transformations or ex-
pansions). Two generalisations are possible, both of which contain free parameters. We
show that if only O(#) deformations are considered, then the closure of the algebra is
such that no choice of the free parameters yields the undeformed algebra. This is feasible
only if O(6?) deformations are included. In either case the algebra closes nontrivially
leading to new structures. Also, a deformed conformal-Galilean algebra is obtained in

this section by a contraction of the deformed conformal-Poincaré algebra.

6.1 Deformed conformal-Poincaré algebra

In this section we analyse the deformations in the full conformal-Poincaré generators
compatible with a canonical (constant) noncommutative spacetime. First, confining to
the Poincaré sector only, we find that it is possible to obtain a generalisation (by including,
apart from the translations and rotations, a symmetric second-rank tensor operator) of
the Poincaré algebra containing two arbitrary parameters. Fixing these parameters yields
the usual undeformed algebra. This result is in comformity with that obtained in [92].
Including the conformal sector yields further novel algebraic structures. We find that
there exists a one-parameter class of deformed special conformal generators that yields
a closed algebra whose structure is completely new. A particular value of the parameter

leads to the undeformed algebra.

We begin by presenting an algebraic approach whereby compatibility is achieved with
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noncommutative spacetime by the various Poincaré generators. This spacetime is char-

acterised by the algebra

[zt 27| = 10" [DusDv] =0, (", p,] = 16", (6.1)
For constant 6, it follows that, for any spacetime transformation,

[0z, & + [2*,02"] = 0. (6.2)

It is obvious that translations, dz# = a*, with constant a*, are compatible with the
condition (6.2). The generator of the transformation, consistent with 62% = ia”[P,, ],

is
7/5# = i)\,u . (63)

For an undeformed Lorentz transformation, dz# = w*'Z,, w"” = —w"*, the require-
ment (6.2) implies w# 0™ — w” 0 = 0, which is not satisfied except for two dimensions,
when w,,, and 60, become proportional to the antisymmetric tensor €,,. Therefore, in
general, the usual Lorentz transformation is not consistent with the condition (6.2). A
deformation of the Lorentz transformation is therefore mandatory. We consider the min-

imal deformation so that the transformation law is modified by terms proportional to
0:

0t = W, + niwh,0" Dy + naw, 0" Py + Naw,. 0" P,

where nq, no and ng are coefficients to be determined by consistency arguments. The

generator,?
T =T = TP+ N OB — 0 Be) + NP
= zMpY + M0 p,p” + %)\20’“’132 — (uv), (6.4)
reproduces the above transformation as

STH — _%wpa [j”",/x\“}

Whenever convenient, we shall use the symbol (uv) to denote the preceding terms with p and v
interchanged. For example, 2™V _ () = Z v _ Zovetiss _ g _ () and — Z v _
<N’I/> — _ZMV + ZVM
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for ny = no+1 = A\, ng = — A9, a result which follows on using the basic noncommutative
algebra (6.1). It is therefore clear that ny = ny = 0 is not possible, which necessitates

the modification of the transformation as well as the generator. It turns out that?
[ j/w’ jﬂo] — [nup jvcr — P jucr — e jl/p + o jup
— 0" {(2x — )P 4+ MNP0 } + 67 {20 — 1)P'D7 + AP }
07 {20 = DFP + AP} — 07 {20 = VPP + AP0} |
= i[n“pjw 0’“’{ (2A1 — 1)P'D7 + AoD’n ""}] (uvpo) .
(6.5)
The closure of the normal Lorentz algebra is obtained only for \; = 1/2 and Ay = 0 [92].

As a curiosity we remark that it is possible to have a generalised type of Poincaré
algebra with generators 73” J w S = ptpY. Since the P-P and J-P algebras retain
their undeformed structures, it is clear that the closure of this algebra with an extended
generator holds. It is worthwhile to mention here that a symmetric second-rank tensor
as a generator occurs in the example of the 3-dimensional isotropic harmonic oscillator:
H = p?/2m+mw?x?/2. The dynamical symmetry generators, J; = €12k, Qij = T;x;—
8;;%2/3, satisfy an SU(3) algebra. The quadrupole operator Q,; is obviously symmetric
and traceless.

Similarly, the usual scale transformation, éz* = aZ*, is not consistent with the con-

dition (6.2). A minimal deformed form of the transformation may be written as
ozt = ozt + and"’p, .
The consistency, 07+ = ia[ﬁ, "], is achieved only for n =1 by

~

D=3"p,. (6.6)

Likewise, to achieve consistency with the condition (6.2), we start with the minimally
deformed form of the special conformal transformation:
67" = 2w, 77" — wha?
+ w, (M10°" 2D, + mabH 2o p” + mab**2% p, + myf"? + ms0° 2" p,,)

+ mew 0P % By

3The symbol (uvpo) means the following: Z* — (uvpo) = (Z — (uv)) — (po).
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The generator,
KP = 2327375, — B9 + m0" Py + 10772 Papr + 1507727 P’ (6.7)

is consistent with 0z = 1wp[ICp T forme =m3=0=mg=ms =my—2=m3g— 2 =
my + 2 and my = —n);.

This completes our demonstration of the compatibility of the various transformation
laws with the basic noncommutative algebra. However, achieving consistency with the
transformation and closure of the algebra are two different things. It can and does turn
out that the minimal O(#) deformation, while preserving consistency, does not yield a

closed algebra. Indeed we find that the conformal algebra
[0, D| = i [K+ 20 (5D = iy ) = 07 (T + Pyl

does not close, necessitating the inclusion of O(#?) terms in the deformed transformation
and the deformed generator. Therefore, instead of the form appearing above Eq. (6.7)
we now start with

6Tt = 2w, 7T — wha?
+ w, (M10°42° D, + Mol T, D7 + msb**27 p, + myb'? + ms607° 2" p,,)
+ mew" 07T ps + wh (M0 0,5D° + ms0°0,°DDs)
+w, <m90 ﬁ@ D"+ mipf”0,° pop*
+ m110"0,° Do’ + m120P0," D + m139pa9w1/7\a2/9\a> .

An appropriately deformed form of the generator containing O(6?) terms is given by

KP = 2zr7° Do — 22D + O Dy + 120777 5p5ﬁa + 77390’3%\01/7\51/7\’)

AAQ

+ 140°P0,° Do DD + 1507 005D D" + 160700 Do (6.8)

Consistency with the transformation law now requires m; = —2, my = mg +2 =13 + 2,
my =2—mz=2+my3=2—1)p, My = —N1, My =Mg/2 =105, Mg = (M —2—my)/2 =
Ny and myg = 2mys = 214, implying 6 free parameters in the generator and in the

transformation. However, the closure of the algebra
R2,D] = i K7+ 201 = )05, D — 2(ims + )0 By — 21+ 15)0° Tas”

+ (03 — 4n0)0°P0,° Do DsD’ — Ans0°7 0P’ D" — 46070, D>0°]  (6.9)
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fixes 5 parameters, 7o = —n3 = —4ny = 1, 75 = ng = 0, leaving only one, 7, as free.

The final form of the deformed generators, therefore, is given by

P,u = ﬁu )

T =5+ 3047 Dep” — (),

~ 2 (6.10)
D = 7", ,

o~ A~

KP = 23957, — T3P + m0” P, + 07 Psby — 07T, 0P’ — 10°°0, P sl

which involves one free parameter. Observe that the free parameters in the Lorentz
generator are ruled out as a consequence of the closure of the J-K algebra. The various

generators satisfy the deformed algebra:

5] =0, PrJ| = =i BT~ (po),
:j’“’,f”"] = in“pj”" —(uvpo) , ﬁ,ﬁ“} = 17/5“,
'ﬁ,jw} ~0, :]’@p,ﬁu] — 9 (77'”“134— jﬂ#) ’

il/C\P, ful/} = —i [npuﬁv + (i +m) (gpuﬁu _ npp,ez/o',l/)\a) ] ), (6.11)

:169,13} - [/EP — 2% +m)9ﬂu734 ,

:IEP, /@L} = 2i(i +m) (epﬂﬁ - eﬂajp(,) —{pp).

We observe that the Poincaré sector remains unaffected, but the conformal sector changes.
A one-parameter class of closed algebras is found. We therefore obtain new algebraic
structures in the conformal sector. Also, unlike the Poincaré sector discussed earlier, it
is not necessary to extend the set of generators to obtain these new structures. Fixing
m = —1i yields the usual (undeformed) Lie algebra. In that case the deformed special

conformal generator also agrees with the result given in [100].

6.1.1 Coordinate transformations and generators

The form of the generators in Eq. (6.10) with 71 = —i obeys the usual conformal-
Poincaré algebra. It is possible to obtain this form of the generators starting from the
generators in the commutative space and then using the appropriate transformation from

the commutative (z,p) to the noncommutative (z,p) description. To this end, we note
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that the transformation p, = p,, " = z* — %Q“Z’py preserves the basic commutation

relations:

[ﬁuaﬁu] = [p/upu] = 07
[/x\“aﬁu] = [IH - %Quopoapl/} = iéﬂy,

[Z#, 2] = [x“ — %Q“Upg, x’ — %9”’\]9,\] = i0"" .

Now taking the generators in the commutative space and applying the inverse trans-
formation, p, = p,, «* = " + %6’“’@, yields the generators in the noncommutative

space:

Pr =Pt (x(Z,p), p(T,p)) = p"(T,D) = P,
T = J ((2,0), p(F,P)) = a"p’ — 2"p* = (F + 30"°D,) P* — (uv)

D =D (z(Z,p),p(@, D)) = a"p, = (T" + 36""D,) D = TPy, (6.12)
K = K? (2(Z,p), p(Z, D)) = 22°2p, — z°p°
= 2(T° + 56"Pa) (27 + 307°D5) Py — (T + 56" Pa) (Tp + 56,50°) P

o~ A~

= 20°T°D, — TP — 107Dy + 0T Dppy — 07° T, D" — 20°°0,°DubsD” -

This also explains the fact that these deformed generators satisfy the usual undeformed
algebra. Nontrivial distinctions arise when 7; # 1 in which case new structures are

obtained. These cannot be reproduced by simple coordinate transformations.

6.1.2 Representations

In the usual commutative space a symmetry exists between the coordinates  and mo-
menta p. Each is an observable with eigenvalues extending from —oo to +oo and the
usual commutation relations involving x and p remain invariant if x and p are inter-
changed and ‘i’ is replaced by ‘—i’. One may then set up the coordinate representation
in which z is diagonal and p = —i-% a with A = 1. Alternatively it is also feasible to write

the momentum representation where p is diagonal and x = 16%.

In the noncommutative space, on the other hand, the symmetry between x and p is

lost. As will soon be shown, this leads to nontrivial distinctions between the coordinate



6.1. Deformed conformal-Poincaré algebra 115

and momentum representations. The relations in Eq. (6.1) are easily reproduced by
representing

A 0

A~ ~ _ .
xh =71", Dp=—10, = 1_0@‘7

(6.13)

in view of the relations [2#,z"] = 16", [a“ 9, =0, [5#, z¥] =6,”. This is the coordinate

representation. One may also choose the momentum representation:

PO R . _ .0 ~
Pu=Du, T =i0"—30"D, = i— —30"p,. (6.14)
0D,
The relations in Eq. (6.1) are now reproduced in view of [p,,p,] = 0, [0%,07] = 0,

A~

[0, D] = 0*,. The deformed generators in coordinate representation read

)

P, =—i0,,

o= i — 10179,0" — ()

Y W

- _ ifp\ué\u , (6.15)
KP = —2i3°%°0, + i720° — im6”°0, — 0”°5°9,0,
075,000~ L000,75,5,.
It is a matter of straightforward calculation to show that the algebra (6.11) is indeed

satisfied.

Momentum representation. From a purely algebraic point of view one may use either
coordinate or momentum representation. However it appears that, for noncommutative
space, momentum representation is more favoured since the momenta still continue to
commute. This is even true from an algebraic point of view, as we now demonstrate by

writing the generators in the momentum representation.

Translations are trivially represented by Pr = p*. Let us write down the generator

of Lorentz transformations in momentum representation:

We note that the extra (deformed) pieces exactly cancel out. The definition of the Lorentz

generator, as compared to the commutative space description, is thus form-invariant. This
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is a generic feature, it is also true for dilatations:
D = 35 = 5d" + iN =, (18" = 367, ) + iN = 15,0 + iN,
where N = ¢*, is the number of spacetime dimensions. For special conformal transfor-
mations we have
Kr = pPd® — 2p,0°0° — 2NO” + (1 + )6 D, .
Although there is deformation in the generator for the general case, for n; = —i, when

the generators satisfy the usual (undeformed) algebra, the deformation in Ke drops out

in the momentum representation.

Thus all the generators have exactly the same structure as in the commutative descrip-
tion. It shows the naturalness of the momentum representation. This is also intuitively
understandable since noncommutative-space momenta still commute among themselves,

as they do in the commutative space.

6.1.3 Coproducts and Hopf algebra

The deformed generators lead to new comultiplication rules. To obtain these rules we
apply the operator to a product of two functions. Using the coordinate representation it

follows that
Pu(F3) = =10, (75) = (-i10.F) 5+ F (-19.9) = (P.f) 5+ F (Pd)
which yields
AP)=P,@1+1@P,. (6.16)
Similarly we find
AT"™) =1 [f“” ®1+10®J™ + o (73” QP P’ ® ﬁ”)} — (),  (6.17)
AD)=D®1+1®D+0"P,®P,, (6.18)
AR =KP ©1+10 K + 07 (ﬁ@ﬁ,—ﬁ,@ﬁ)
+ 07 (a0 Py = Py 0 J7)
+ Lgeoge (73& ® PyP, + PsP, @ 73a>
— 1goog,f (ﬁp ® PsP, + PsP, ® 73f’) . (6.19)
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The free parameter appearing in K? does not appear explicitly in A(lep ). The coproduct
rules for the Poincaré sector were earlier derived in Refs. [23-25,92] and for the conformal
sector in Refs. [93,100]. Now we compute the basic Hopf algebra. It turns out that the
Hopf algebra can be read off from Eq. (6.11) by just replacing the generators by the

coproducts. For example,

[A(;%p), A(ﬁ)] — i [A(/%p) —2(i + nl)eﬂMA(ﬁﬂ)] .

6.2 Deformed Schrodinger and conformal-Galilean al-

gebras

The analysis of the previous section is now done for the nonrelativistic symmetries. We
consider separately the Schrodinger symmetry and the conformal-Galilean symmetry,

both of which are extensions of the Galilean symmetry.

6.2.1 Deformed Galilean symmetry

The undeformed n-dimensional Galilean algebra, which involves Hamiltonian (), trans-

lations (P?), rotations (J%) and boosts (G*), is given by

[Pl PI] = [T, j’“] = 16T — (ijkt)

6'.¢7] = [H,P'] =

[H, zy} [H,G'] = _ipi7 (6.20)
[Pl,.ﬂ’“] = 15“6739 (k) , [P, G7] = —imé"”

4

T = 160G — (jh).

The standard free-particle representation of this algebra is given by

H= _p2 ) Pl = pl )
2m (6.21)
T = aipd — aip G = mat — tp'.
Using the usual commutation relations [2%, 27] = [p’,p’] = 0, [z, p/] = 10%, the algebra

(6.20) is easily reproduced from generators (6.21).
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Now we introduce noncommutativity in space:
8,77 =107,  [pP] =0, [2.p]=1i0". (6.22)

Exactly as done for the deformed Poincaré generators, we follow a two-step algebraic pro-
cess. First, by requiring the compatibility of transformations with Eq. (6.22), a general
deformation of the generators is obtained. A definite structure emerges after demanding
the closure of the algebra. Let us first consider the minimal deformation in the genera-
tors. The linear momentum 7' and the Hamiltonian, H = p?/2m, retain their original
forms, basically because the algebra of p' is identical to p. For rotations and boosts a
deformation is necessary. Considering the minimal (i.e. least order in ) deformation, we

obtain the following structure:

~ 1

H=-—p",
2mp

P

(6.23)
F9 = -+ 0 (05 - 05 F) + 07,
Gl =ma — 19 + \gmbIp + Aym>097 |

The transformations derived from these generators are consistent with the noncommuting

algebra (6.22). Till now the A parameters are arbitrary. These will be determined by
requiring the closure of the algebra. Using the brackets (6.22) we find

9T = 1| T - 0" { xn - DI + 2emHe || - Gijke),
G éj] = i [m2(1 — 2X3)07 — 2mAN,07 — mOA20M 0]

G| = 1|0G  ml1 = A= A)0UPE 4 m(Ay = A)6 P 4 m P
{98 — 6 (1 A0 P
+ (MO 200"07) PUY] — (k).
If we conform to the usual type of algebra, in the sense that any bracket between the
generators should not involve product of generators, then the first equation requires Ay

to be set to 1/2, in order to get rid of the term involving p*77. Also, as is clear from the

last equation, the closure of the algebra requires A4 to vanish. For this reason, we set
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A1 = 1/2 and Ay = 0, so that the above equations simplify to
| 7 j’ﬂ =i (5““5” _ 29““)\2mﬁ6j€> — (ijkt),

é@} — im2(1 — 2),)0%, (6.24)

_§i7 j]k] ] [(y'kéj +m (% — )\3) (Qijﬁk + (5ik(9jm7/5m> + m)\erkﬁi - <]k>

The structure of the other brackets remains unaltered:

PP =0, HP| =0,
:ﬁ,jﬂ —0, ﬁ é} — i, (6.25)
LT = P — (k). P07 = — i,

The deformed generators (6.23) now read

~ 1

H = —AQ,
2mp

P =7

(6.26)
9=~ T+ L (O~ ) + 0P,
C?i = mz — tﬁi + Agmei]ﬁj.

We thus have the deformed Galilean algebra (6.24) satisfied by the generators (6.26). As
happens for the relativistic case, here also we find new algebraic structures. There are
two arbitrary parameters Ay and Az. Fixing Ay = 0 and A3 = 1/2 yields the standard

(undeformed) algebra; the generators are still deformed, however.

Now we can give the operators some differential representation. The deformed gener-

ators in coordinate representation (Eq. (6.13) with u = ¢) read

~ 1 ~
H=——V
2m

Py

P = —i0,

V- (g@ _ 5:\3@) _ <9ik(§k5j _ ijgkgi> Wil (6.27)

1
2

G' = mT + it — i\gmb7&,
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In momentum representation (Eq. (6.14) with p = ¢), on the other hand, they read

I

H= 5P

g

T4 = —p'zd + 7t + 107D — 07" D) + Aa07p (6.28)

=~ i (P - D) + ha07B
Gl = imd' — tp’ + ()\3 — %) mep .
Expectedly, for A\ = 0, A3 = 1/2, which corresponds to the standard (undeformed)

Galilean algebra, there is no deformation in the generators in the momentum represen-

tation. The same thing also happened for the relativistic treatment.

6.2.2 Deformed Schrodinger algebra

The standard Schrodinger algebra is given by extending the Galilean algebra with the
algebra of dilatation (D) and expansion or special conformal transformation (). The

relations (6.20) are augmented by

[H,D] = —2iH, [H,K] = —iD, [D,P'] = iP",
(K, P'] =igG", (77, D] =0, [J7,K] =0, (6.29)
[D,G'] =—-ig", [K.¢'] =0, [D,K] = =2ik.
The free-particle representation of this algebra is given by the relations (6.21) along with
D =p'a’ — %pz : K= % (X — %p)2 . (6.30)

Introducing noncommutativity and starting with the minimal deformation, we write down

for dilatation and expansion:

~ ot , oy
D =p'7" — —p> + \09m22'p (6.31)
m
o~ m [ t 2 i
K== (x——p] +Axmb’z'D. (6.32)
2 m

These modifications are compatible with the noncommutative algebra (6.22). Next, the

Lie algebra is considered. Using Egs. (6.26) and (6.31), we obtain

[j"j,ﬁ} =i [—Zm)\ﬁ”ﬁ + Asm®0™ (/p* — T + %Wﬁgﬁ?)} — (ij)- (6.33)
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The closure of the algebra requires A5 = 0. Then the brackets of D with other generators

are found to be
H,D| = —2ifk, D.P| =P,
[j”,D] — —AimAOIH, [D,Q’L] . [gz +m(l - 2A3)9”Pﬂ} ,
leading to a non-standard closure of the algebra.
Turning to expansion now, we find

[13, /6} =i [—2/6 + (L= Ag) mo?7 (zAzmeiﬂ'ﬁ - fﬂ) +2 (3= ) mH”@imﬁ”ﬁ] ,

which fixes A\¢ = 1/4. Then the brackets involving K are seen to be

K| =-iD,

IE P =[G+ (=2 mov P,

7, K] =i [+ (H’kj’” 0 T") — 22am09D)| (6.35)
_16 G| = —im0" [ (3= 2g) G + (M = hg + ) mo" P

D.K| = —i (2K + 70777 — Dam0907H).

Thus the dilatation and expansion have the final form

t

D=p7 - —p°, (6.36)
m
~ m t 2 m ...
Cm L\ m
K 5 <x mp) + 49 zp. (6.37)

Some comments are in order. We have obtained the deformed Schrodinger algebra
involving two parameters, Ao and A3. The closure of the algebra is highly nontrivial and
yields new structures. For # — 0, the deformed algebra reduces to the undeformed one. A
distinctive feature is that there is no choice of the free parameters for which the standard
(undeformed) algebra can be reproduced. This is an obvious (and important) difference

from the Poincaré treatment.

It is however possible to obtain an alternative deformation which, for a particular
choice of parameters, yields the undeformed algebra. First, notice that as far as the
Galilean part is concerned, fixing A\ = 0 and A3 = 1/2 gives the standard algebra,
although the generators are deformed. With this choice, the brackets involving D and
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Galilean generators, given in Eq. (6.34), also reduce to the standard ones. The same is,
however, not true for brackets involving K, given in Eq. (6.35). So let us remodify the

form (6.32), allowing the possiblity of 6% terms:
K= % <§ — %ﬁ)Q + A\embOI TP + 69 Ik ()\7mﬁif)k + A\’ TF + )\gm3§:\iﬁk) . (6.38)
Now we get
[FLK] = =1 [D+ 0" (22am' 5% + Am®57)] (6.39)
which fixes Ay = A\g = 0. Further we also have
[ﬁ, I/C\} =i [— 2K + (% — )\6) me" (2)\2m0ij7/'z — ../7\”)
+2(1 = g —2)) meijeimﬁmﬁ} , (6.40)
which necessitates a relation between \¢ and A7 so as to make the last term on the right-

hand side vanish. We therefore set A; = (1/8) — Xg/2. Then the brackets involving K

furn out to be

ﬁlﬂ _ _iD,

KP] =[G+ (s — ) mo ]

TR =i (5= 26)m (6775 — 07 T") — 22,me D], (6.41)
K,G7| = —imt7 (1= x5 = 26) G+ (M = A+ 3) mo#P*|

r ~ A~

D,K| =i [-2K+ (3 = x) mb7 (20m07H — FV)] .

which are the analogue of the set (6.35), for K involving 6% deformation:

2
~ o 1 S o
K= % (§< — %ﬁ) + Xm0 + m (g - %) 0767 p'p" . (6.42)

We have thus obtained another deformed Schrodinger algebra, involving three parameters,
A2, A3 and Ag. It is easily seen from (6.41) that the particular choice of parameters, Ay = 0

and A3 = A¢ = 1/2, reproduces the standard algebra. This agrees with [107].

Rewriting Eq. (6.36) as D = 79" — (t/m)p2 — iN, now N = §'; being the number of

space dimensions, the coordinate representation of D becomes obvious:

~ . t ~
D=—-i7'0'"+ —V* - iN. (6.43)
m
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For momentum representation Eq. (6.36) yields

D=ip'd' — —p>. (6.44)

t
m

For K, first we write Eqs. (6.37) and (6.42) in the expanded form:

comay B  tg ay Ty
Ry = 2%+ L5 = L @5 4 57) + domoi7'5 +m (£ = 22) gigiips
2 =5 om 2 6 8 2 '

(6.46)

Using Z'p'+p'2? = 22°p'— i N in the above equations, yields the coordinate representation

for IE as

~ R 2 < o~ tN .
~ R 2 . tN L~ 1 A RPN
Ky = %ﬁ — %W +iF0 + i = IAembV T —m <§ - 5) 0767%9'0" .
(6.48)
For momentum representation we use Z'p' + p'z’ = 2p'z' + i N:

~ M~ +2 9 i~ tN M ..~

— 723 _A _'t/“L Z_'__'_H’L] 7 .4
’C(l) 255 +2mp itp'o 12 14 o, (6 9)
~ e 12 o~ tN o
Koy = —%5151 + 2—p2 — itp'0* — i<~ +im ()\6 — %) 070" . (6.50)

m

We notice that in the momentum representation, there is no deformation in ]6(2) for the

special case of \g = 1/2, which corresponds to the standard algebra.

Now onwards we shall restrict to Krp) whenever expansions are considered.
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6.2.3 Coproducts and Hopf algebra

The comultiplication rules, using the coordinate representation, for generators given in
Egs. (6.27), (6.43) and (6.48), turn out to be
A~ A~ AN 1 AN AN
A(H):H®1+1®H+EP’®PZ, (6.51)
APY=P @1+107P, (6.52)
ATT) =1 [fﬂ ®1+1®J9+6™ (73]‘ QP - P ﬁﬂ)}

+ X0TP @ P — (if), (6.53)
A(G)) = %[§i®1+1®§"—t(73"®1+1®73i)
+mo7 {(hg = P @ 1+ 210 P ], (6.54)
A(ﬁ)—5®1+1®ﬁ—%ﬁi®ﬁi+ig1®1+9if'73i®73f, (6.55)
AK)=K®1

+1®l€+%[t273i®73"—§i®§"—t<73i®§i+§i®73i>]

tIN T~ ~ o~ ~
—iplel- 6" [t??l R P! 4+ (A3 — 1)P' @ G7 + 3G’ ®Pl]
— 090" (=X + 1) P @ P (6.56)

Note that among the free parameters Ao, A3 and Ag appearing in the definition of the
deformed generators, only the first two occur in the expressions for the deformed coprod-
ucts. The parameter \g, which is present in I/C\, however, does not occur in A(IE) Now
we compute the basic Hopf algebra. Expectedly, it turns out that the Hopf algebra can
be read off from Eqs. (6.25), (6.24), (6.34) and (6.41) by just replacing the generators by

the coproducts.

As is known there is an alternative method, based on quantum-group-theoretic argu-
ments, of computing the coproducts [24,25,93]. This is obtained for the particular case
when the deformed generators satisfy the undeformed algebra. In our analysis it corre-
sponds to the choice Ay = 0, A3 = A\¢ = 1/2. The essential ingredient is the application
of the abelian twist function, F = exp(460“P’ ® P7), as a similarity transformation on

the primitive coproduct rule to abstract the deformed rule.
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Consider first the Baker—-Campbell-Hausdorff relation,

eABe_A:B—}—[A,B]—F%[A,[_A,BH +een

which implies
FBF™ =B+ 07 [P'o P, 8]

+% (%) gii gkt [,Pk®7;£7 [Pi®77j,8]] 4. (6.57)

Let us now take the specific example of Galilean boosts. Therefore, taking the primitive

coproduct (Eq. (6.54) with § = 0, the commutative-space analogue),
AGY=1[®1+10G —-t(PPel+1aP)],

we find, after an application of the twist function,
FAG)F' = AG) - %9@7 (PPol-1a7P), (6.58)

where use has been made of Eq. (6.57). This is the deformed coproduct rule (6.54) (for
the specific values of the free parameters already stated) obtained by identifying

AG) = [FAG)F i ipspi - (6.59)

Similarly the coproducts for other generators can also be obtained from the same twist

element.

6.2.4 Deformed conformal algebra through contraction

Strictly speaking, the algebra obtained by enlarging the Galilean algebra by including
dilatations and expansions, as discussed in the previous subsections, is not a conformal
algebra since it does not inherit some basic characteristics like vanishing of the mass,
equality of the number of translations and the special conformal transformations, etc.
However since it is a symmetry of the Schrédinger equation, this enlargement of the
Galilean algebra is appropriately referred to as the Schrodinger algebra. It is possible
to discuss the conformal extension of the Galilean algebra by means of a nonrelativistic

contraction of the relativistic conformal-Poincaré algebra. Recently this was discussed
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for the particular case of three dimensions [108]. This algebra is different from the
Schrédinger algebra discussed earlier. We scale the generators and the noncommutativity

parameter as

D=0,
o _ (Ao, ;e) — (K, 2K,
Pr = (P P) = (H/e, P, (6.60)

o = (7, 79) = (:6.7%).
or — (607;791'3') _ <0702§ij) ’
where ¢ is the velocity of light. We use this scaling in Eq. (6.11) and take the limit

¢ — 00. Finally we redefine to choose the same symbols for the nonrelativistic case; i.e.

we do the replacements D — 73, etc. Then we get the deformed algebra

DH| = iR, D.P| =i

D, AU} —0, 15,@'] =0,

K,H| =2in"D, K,P'| =2iG",

£.5] - ik 7.E] -0,

K.G| = —in® [ = (i +n)07B)) KK =2i(i +m)07G;,  (6.61)
K79 =0, KH| =210,

K7 =0, K9] =0,

R TE| = =i [0RE + + m) (09PF = 70B,) | - (k).

:/@’,ﬁ] = [i% (i +n1)9"j73j] |

This algebra also contains a free parameter. Restricting to three dimensions and the
specific choice 7; = —1 reproduces the results obtained recently in [108].
6.3 Discussion

We have considered in full generality the most simple solutions to Eq. (6.2) subject to

the condition of a noncommutative spacetime. These solutions are first-order in the



6.3. Discussion 127

noncommutativity parameter . For the Poincaré symmetry, our results agree with an
alternative approach provided in [92]. Inclusion of the conformal sector leads to the first
nontrivial effect. We find that there is no first-order solution that yields a closed algebra.
It becomes mandatory to include second-order terms in the conformal generator to get
this closure. For the Schrodinger symmetry there is a first-order solution that satisfies
the closure property. However, as already stated, the intriguing point here is that there
is no solution for the free parameters that reproduces the standard (primitive) closure.

It becomes essential to include second-order terms to have this property.

The present analysis can be extended to other (non-constant) types of noncom-
mutativity. Some results in this direction have already been provided for the Snyder

space [102].






Chapter 7
Concluding remarks

Although it has a longer history, the idea that configuration-space coordinates may not
commute has arisen recently from string theory. Noncommuting spatial coordinates and
fields can be realised in actual physical situations [55]. Therefore, there is enough moti-
vation to investigate what follows just from the idea that coordinates are operators that
do not commute. Noncommutative field theores, which are the field theories in which the
coordinates do not commute, have many novel features. Today we have enough literature
on the subject. The aim of this thesis was to further these investigations. We studied

some aspects of noncommutativity in field theory, strings and membranes.

We started, in Chapter 1, with a brief introduction to noncommutative spaces. Then
we discussed briefly the Landau problem, an important physically realised example of

noncommuting coordinates.

In Chapter 2, we first presented a review of noncommutativity in an open string mov-
ing in a background Neveu—Schwarz field in a gauge-independent Hamiltonian approach.
The noncommutativity was seen to be a direct consequence of the nontrivial boundary
conditions, which, contrary to several approaches, were not treated as constraints. The
origin of any modification in the usual Poisson algebra was the presence of boundary
conditions. In a gauge-independent formulation of a free Polyakov string, the boundary
conditions naturally led to a noncommutative structure among the coordinates. This
noncommutativity vanished in the conformal gauge, as expected. For the interacting
string, a more involved boundary condition led to a more general type of noncommu-

tativity. Contrary to the standard conformal-gauge expressions, this noncommutative

129



130 Chapter 7. Concluding remarks

algebra survived at all points of the string and not just at the boundaries. In contrast
to the free theory, this noncommutativity could not be removed in any gauge. In the

conformal gauge, noncommutativity survived only at the string endpoints.

We then analysed an open membrane, with square and cylindrical topology, ending
on p-branes. Both the free case as well as the theory where the membrane is coupled to

a background three-form potential were considered.

For the free theory, the world-volume action was taken to be either the Nambu-—
Goto type or the Polyakov type. For the Nambu-Goto action, a gauge-independent
formulation, similar to that adopted in [36] for the string theory, was presented. The
reparametrisation invariances were manifested by the freedom in the choice of the multi-
pliers enforcing the constraints of the theory. The implications of the boundary conditions
in preserving the stability of the free membrane were discussed, highlighting the paral-
lel with the string treatment. A set of quasi-orthonormal gauge-fixing conditions was

systematically obtained, which simplified the structure of the Hamiltonian.

A constrained analysis of the Polyakov action, contrary to the Nambu—Goto action,
led to the presence of second-class constraints. However, by an iterative prescription of
computing Dirac brackets, the first-class sector was identified. The Dirac brackets of this
sector were identical to the Poisson brackets and exactly matched with the involutive
algebra found in the Nambu—Goto case. The analogue of the quasi-orthonormal gauge
was also discussed in the Polyakov formulation. It naturally led to the choice of the metric
which is used to perform calculations in the light-front variables [27]. Moreover, in this
gauge, the energy—momentum tensor was expressed as a combination of the constraints.

On the constraint shell this tensor was seen to have a vanishing trace.

A fundamental difference of the quasi-orthonormal gauge fixing in the two cases was
pointed out. In the Polyakov case, gauge fixing entailed certain restrictions on the metric.
Since the metric is regarded as an independent field, the gauge fixing does not affect
the constraints of the theory which generate the reparametrisation invariances. The
discussion was thus confined to the Poisson algebra only. A similar gauge fixing in
the Nambu—Goto case obviously restricts the target-space coordinates. The first-class
constraints get converted into second-class ones, thereby necessitating the use of Dirac

brackets. Their evaluation is quite complicated due to nonlinear terms.
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Since Dirac brackets were avoided in the Polyakov formulation, we proceeded to dis-
cuss noncommutativity only in this formulation. Also, cylindrical topology of the mem-
brane was considered. Contrary to standard approaches [31-35], boundary conditions
were not treated as primary constraints of the theory. Our approach was in line with
the treatment for string theory discussed in [22]. Thus, noncommutative algebra, if any,
would be a manifestation of the Poisson brackets and not Dirac brackets. The non-
commutative algebra was required to establish algebraic consistency of the boundary
conditions with the basic Poisson brackets. For the free theory it was found that there
was no clash between the boundary conditions and the Poisson brackets, hence there was

no noncommutativity.

For the membrane interacting with a three-form potential a nontrivial algebraic re-
lation was found that revealed the occurrence of noncommutativity, independent of any
gauge choice or any approximations. Since this equation could not be solved, we passed
on to its low-energy limit. Now this limit, which takes a membrane to a string, has
been known for quite some time [109] and has been studied or exploited in several cir-
cumstances [41,110,111]. The cylindrical membrane is assumed to wrap around a cir-
cle, whose radius is taken to be vanishingly small. This enforces a double dimensional
reduction with the eleven-dimensional compactified target space passing over to the ten-
dimensional space while the membrane effectively reduces to an open string. We studied
this limit and showed how the membrane boundary conditions, action and the world-
volume metric were transformed into the corresponding expressions for the string. The
equation governing noncommutativity in the membrane was likewise shown to reduce to
the string example. Since every point in D-brane can correspond to the endpoints of the
cylindrical membrane, we get noncommutativity in D-brane coordinates also—albeit in
this low-energy limit. Of course, this feature of noncommutativity will persist even if this

limit is not considered, otherwise the basic equation (2.123) becomes inconsistent.

In Chapter 3 we already took a noncommutative spacetime and discussed its impli-
cations. The Seiberg—Witten map, which provides an alternative method of studying
noncommutative gauge theories by recasting these in terms of their commutative equiv-
alents (by replacing the noncommuting vector potential by a function of a commuting

potential), was discussed.
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Then we provided a Seiberg-Witten-type map relating the sources in the noncommu-
tative and commutative descriptions. For investigating quantum aspects of the mapping,
we applied it to the divergence anomalies for the abelian theory in the two descriptions.
For the slowly-varying-field approximation, the anomalies indeed got identified. Thus
the classical map correctly accounted for the quantum effects inherent in the calculations
of the anomalies. The results were checked up to O(6?). We also provided an indirect
method of extending the calculations and found an agreement up to O(6). The analysis
strongly suggests that the classical mapping would hold for all orders in 6, albeit in the
slowly-varying-field approximation. In the nonabelian theory, the classical maps for the
currents and their covariant divergences were given up to O(#). Our findings may also
be compared with [48,49] where the classical equivalence of the Chern—Simons theories

in different descriptions was found to persist even in the quantum case.

For arbitrary field configurations, derivative corrections to the classical source map
were explicitly computed up to O(6?). Indeed, it is known that if one has to go beyond
the slowly-varying-field approximation, derivative corrections are essential. For instance,

Dirac-Born-Infeld actions with derivative corrections have been discussed [112-114].

In Chapter 4 we obtained the O(0) structure of all the anomalous commutators involv-
ing the covariant axial-vector current in noncommutative electrodynamics for a magnetic-
type 6. The basic step in our approach was to exploit the Seiberg—Witten maps for cur-
rents and fields that relate the noncommutative and usual (commutative) descriptions.
The commutators in the noncommutative theory were thereby expressed in terms of their
commutative counterparts which are known. Substituting for these known commutators
we obtained the commutators in the noncommutative theory. The results were displayed

both in terms of the commutative (usual) and noncommutative variables.

We showed that the commutators we obtained were compatible with the noncommu-
tative covariant anomaly. For this we derived certain consistency conditions involving
this anomaly and then showed that the commutators indeed satisfied these conditions.
It may be remarked that such consistency conditions were used in usual electrodynamics
to reveal the compatibility of the various anomalous commutators with the Adler—Bell-
Jackiw anomaly. In the usual quantum electrodynamics without axial-vector currents,

anomalies in potential-current commutators (‘seagulls’) and in current—current commu-
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tators (‘Schwinger terms’) are related and cancel exactly when the divergence of covari-
ant matrix element is taken, reproducing the familiar current conservation. The distin-
guishing feature of the commutator anomalies associated with the triangle diagram is
that when the axial-vector divergence is taken, the seagulls and Schwinger terms do not
cancel [68]. Rather, they combine to give the divergence anomaly (Adler—Bell-Jackiw
anomaly), giving an alternative interpretation of the divergence anomaly as the result
of non-cancellation of seagulls and Schwinger terms. Our analysis thus suggests that
the star-gauge-covariant anomaly can also be regarded as consequence of a similar effect
in noncommutative electrodynamics. Finally, we analysed the implications of certain
ambiguities present in the ordinary commutators on our scheme, and showed that the

commutators satisfy the consistency conditions irrespective of these ambiguities.

Most popular noncommutative field theories are characterised by a constant noncom-
mutativity parameter 6 that violates Lorentz invariance. Violations of Lorentz symmetry
are intrinsic to noncommutative theories by virtue of nonzero 6,,,. The aim of Chapter 5
was to provide a conceptually cleaner understanding of Lorentz symmetry and its inter-
pretaion in the noncommutative context. Here we derived, starting from a first-principle
Noether-like approach, criteria for preserving Poincaré invariance in a noncommutative
gauge theory with a constant noncommutativity parameter . The criterion for transla-
tional invariance was the same irrespective of whether 6 transformed as a second-rank
tensor or was the same constant in all frames. This criterion was then shown to hold by

performing an explicit check. Thus, as expected, translational invariance was valid.

The issue of Lorentz invariance (invariance under rotations and boosts) was quite sub-
tle. We found distinct criteria depending on the nature of transformation of #. An explicit
check using the equations of motion confirmed the particular criterion for Lorentz invari-
ance when 0, transformed as covariant second-rank tensor. Thus Lorentz invariance was

preserved only for a transforming 6.

We showed that all the transformations are dynamically consistent. The Noether
charges generated the appropriate transformations on the phase-space variables. These

charges also satisfied the desired Lie brackets among themselves.

The complete analysis was done in both the commutative and noncommutative de-

scriptions. By the use of suitable Seiberg—Witten-type maps, compatibility among the
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results found in the two descriptions was established.

The criteria for Lorentz invriance found here were also consistent with the fact that,
for a constant nontransforming ¢ having special values, the symmetry group breaks down

to SO(1,1) x SO(2), a subgroup of the Lorentz group.

Although the noncommutativity of the spacetime coordinates violates relativistic in-
variance, it has been shown by using the (twisted) Hopf algebra that corresponding field
theories possess deformed symmetries. Chapter 6 is devoted to the study of deformed
relativistic and nonrelativistic symmetries on canonical noncommutative spaces. Here we
analysed the deformed conformal-Poincaré, Schrodinger and conformal-Galilean symme-
tries compatible with the canonical (constant) noncommutative spacetime and found new
algebraic structures. We followed a two-step algebraic process. First, by requiring the
compatibility of transformations with noncommutativity, a general deformation of the
generators was obtained. Then a definite structure emerged after demanding the closure

of the algebra satisfied by the deformed generators.

For the Poincaré sector, we obtained a generalisation (by including, apart from the
translations and rotations, a symmetric second-rank tensor operator) of the Poincaré
algebra containing two arbitrary parameters. Fixing these parameters reproduced the

usual undeformed algebra.

For the full conformal-Poincaré case we obtained new algebraic structures. We found
a one-parameter class of deformed special conformal generators that yielded a closed
algebra whose structure was completely new. Unlike the Poincaré sector, it was not
necessary to extend the set of generators to obtain these new structures. Fixing the
arbitrary parameter reproduced the usual (undeformed) Lie algebra. In this case the

deformed special conformal generator also agreed with the result given in [100].

We derived the structures of the generators in the coordinate and momentum rep-
resentations and demonstrated that momentum representation is more favoured for the
noncommutative space [107]. Although there was deformation in the generator for the
general case, for a particular value of the parameter for which the generators satisfied the
usual (undeformed) algebra, the deformation in generators dropped out in the momentum

representation.

Next we considered the Schrodinger symmetry and obtained the deformed Schrodinger
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algebra involving two parameters. The generators involved O(6) deformations. For § — 0,
the deformed algebra reduced to the undeformed one. However a distinctive feature was
that there was no choice of the free parameters for which the standard (undeformed)

algebra could be reproduced.

Exploring other possibilities, then we obtained an alternative deformation which, for a
particular choice of parameters, indeed reproduced the undeformed algebra. In this case
the modified special conformal generator involved O(6?) terms while the other genrators
involved at most O(€) terms only. The deformed Schrodinger algebra now involved three

parameters, a particular choice of which reproduced the standard algebra.

In all these examples we computed the modified comultiplication rules associated with
the deformed generators. These rules also contained the free parameters entering in the
definition of the generators. As a consistency, we showed that the comultiplication rules,
for the particular values of the free parameters yielding the undeformed algebra, agreed
with those obtained by an application of the abelian twist function on the primitive

coproduct.

We also discussed the conformal extension of the Galilean algebra by means of a
nonrelativistic contraction of the relativistic conformal-Poincaré algebra. Recently this
was discussed for the particular case of three dimensions [108]. This algebra is different

from the Schrédinger algebra, both in the commutative and noncommutative descriptions.

Future directions. In this thesis we studied certain aspects of noncommutativity in
field theory, strings and membranes. Noncommutative field theories have many novel
properties which are not exhibited by conventional quantum field theories and we shall
continue to further these studies. The fact that quantum field theory on a noncommu-
tative space arises naturally in string theory and Matrix theory strongly suggests that
spacetime noncommutativity is a general feature of a unified theory of quantum grav-
ity. Noncommutative field theories should be properly understood as lying somewhere
between ordinary field theory and string theory. From these models we may learn some-
thing about string theory and the classification of its backgrounds, using the somewhat
simpler techniques of quantum field theory. Extension of our results of noncommutative
electrodynamics to higher orders and further studies of deformed symmetries, including

supersymmetric extension, are among the possible near-future directions.
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